首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以石油焦基活性炭为主要原料,分别采用KOH和NaOH为活化剂进行二次活化,制备得到中孔活性炭。采用N2吸附、FT-IR、XPS等表征手段考察活性炭样品的比表面积、孔结构及表面化学性质,并利用实验室自制高压吸附装置测定样品在室温下的CO2吸附等温线。结果表明:经KOH、NaOH二次活化后样品均可产生一定数量中孔且其孔径分布变宽,样品单位比表面积的CO2吸附量均高于未处理样品。由KOH二次活化后样品吸附效果更佳,可达4.88μmol/m2.  相似文献   

2.
活化剂种类对活性炭结构及性能的影响   总被引:1,自引:0,他引:1  
以石油焦为前驱体,分别以KOH,NaOH,K2CO3和Na2CO3为活化剂通过化学活化制备活性炭,采用振实密度仪和全自动N2吸附仪研究活性剂对活性炭结构的影响,并以制备的活性炭为电极材料,l mol/LEt4NBF4/PC为电解液组装模拟电容器,采用LAND快速采样电池测试仪和电化学工作站考察不同活化剂对活性炭电化学性能的影响.研究结果表明:KOH具有最强的活化能力,其活化制备的活性炭具有较高的微孔含量和发达的孔隙结构,比表面积达2 362m2/g,孔容达到1.263 cm3/g,以其作电极材料,表现出良好的电容行为,质量比容量最高达到128.0 F/g,随着活化剂碱性的降低,活化能力大幅度降低,制备的活性炭比表面积和孔容急剧减小,K2CO3和Na2CO3不适合用作活化石油焦制备活性炭的活化剂.  相似文献   

3.
为了解决制药行业土霉素菌渣处置的难题,该文以土霉素菌渣为原材料,K2CO3为活化剂,采用化学活化法制备土霉素菌渣活性炭.通过电镜扫描和氮气吸附对较佳条件下制备的活性炭特性进行了表征.实验得出制备土霉素菌渣活性炭的较佳工艺条件为:活化温度800℃,活化时间3h,活化比1∶3.该活性炭的苯酚吸附值为215 mg/g,比表面积达1 593.09 m2/g,亚甲基蓝吸附值为117 mg/g.该活性炭孔结构丰富,主要以微孔为主,平均孔径为1.09 nm,微孔孔容为0.54 cm3/g,中孔孔容为0.27 cm3/g.  相似文献   

4.
煤层气中CH_4/N_2的吸附分离是变压吸附分离领域的难题之一,高性能吸附剂的制备是解决这一问题的关键。以玉米芯为原料,KOH为活化剂,采用一步炭化法制备得到玉米芯活性炭,并探究活化温度对活性炭孔结构、表面性质及CH_4/N_2吸附分离性能的影响。采用FTIR,SEM,XPS,N_2吸附-脱附等方法对活性炭的元素组成、孔结构和表面性质进行表征,并采用Freundlich等温式对25℃下活性炭的CH_4和N_2吸附等温线进行拟合。结果表明,随着活化温度的升高,活性炭比表面积、微孔比表面积和微孔孔容均增加,而表面含氧官能团的含量有所下降。在25℃,100 kPa条件下,活性炭对CH_4和N_2的吸附量与0.47~0.90 nm的微孔孔容有关;而CH_4/N_2平衡分离比与V_(0.47~0.55 nm)/V_(0.47~0.90 nm)和表面含氧官能团的含量有关。活性炭AC-T700具有最高的CH_4吸附量(35.3 cm~3/g),同时CH_4/N_2平衡分离比达到3.5.  相似文献   

5.
以废弃物大红枣枣核为原料,KOH为活化剂,采用浓硝酸氧化改性制备枣核活性炭吸附剂。研究了该吸附剂对铀的吸附性能,并通过红外吸收光谱(FT-IR)、比表面积测定(BET)、扫描电镜(SEM)对吸附剂进行了表征。结果表明:氧化枣核活性炭是一种多孔活性炭,比表面积为277.261 m~2/g,孔体积为0.428 cm~3/g,平均孔径为4.044 nm,微孔体积为0.1218 cm~3/g;在温度298.15 K,pH值5.5,吸附时间11 h,吸附剂质量浓度0.5 g/L,铀初始浓度80 mg/L条件下,枣核活性炭对铀离子的最大吸附量为148 mg/g;吸附过程为吸热反应,符合准二级动力学模型和Langmuir等温吸附模型。  相似文献   

6.
为建立能真实反映煤焦比表面积和孔隙结构的分析方法,分别以N2、Ar和CO2作为吸附质测定淮南煤焦的吸附等温线,并采用多层吸附模型(BET)、孔径分布模型(BJH)和非定域密度函数理论(NLDFT)模型计算煤焦的比表面积和孔隙结构。结果表明:淮南煤焦含有连续分布的微孔和介孔,孔形以狭缝形孔和一端封闭的盲孔为主。由于四极矩的存在导致以N2为吸附质时测得的吸附量、比表面积和孔容较Ar大;BET模型主要用于介孔材料孔结构的分析,用于样品中的微孔分析时,其分析表面积偏小。表征多孔碳材料,特别是含有复杂无序的孔隙结构的物质时,一种较为合适的方法是:首先,以Ar作为吸附质,判断煤焦中介孔的孔形及孔径分布,并采用NLDFT模型对煤焦在介孔范围内的比表面积和孔体积进行计算;然后,以CO2作吸附质对煤焦的微孔进行分析,通过NLDFT模型获取煤焦微孔范围内的比表面积和孔结构等参数。  相似文献   

7.
以玉米芯废渣为原料、KOH为活化剂,采用化学活化法制备多孔碳材料用于液体危化品苯的吸附.通过热重分析仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)分析多孔碳的微观结构和表观形貌.研究表明:在碳化温度350,℃、碳化保温时间30,min、m(KOH)∶m(C)=4∶1、活化保温时间120,min的条件下,最佳活化温度为900,℃,KOH的造孔效果最好,制备的多孔碳产品以微孔为主,比表面积达到2,387,m2/g,对苯的饱和吸附量最大为14,235,mg/g.  相似文献   

8.
以稻壳为原料,氯化锌为活化剂,运用微波电加热双模式制备活性炭,并研究了活性炭净化水中重金属(六价)铬离子的机理.通过单因素实验得到制备活性炭的最佳工况为:活化温度600℃,活化时间50 min,浸渍比(m(氯化锌)∶m(稻壳))1.5∶1,升温速率15℃/min.使用FTIR、比表面积及孔径分析仪(BET)、p HIEP(等电位点p H)等方法表征最佳工况下活性炭的孔隙特性及表面化学性质.实验结果表明,稻壳活性炭的比表面积达到了1 719.32 m2/g,总孔容1.05cm3/g.进一步研究了吸附时间、p H值、活性炭投加量及(六价)铬离子初始浓度对活性炭吸附重金属(六价)铬离子的影响规律,结果表明,在p H=2.0~3.0时,最佳工况下制备的活性炭具有最大吸附量,并且在90 min时达到吸附平衡.  相似文献   

9.
利用SEM-PCAS孔隙定量表征技术与低压N_2等温吸附实验研究X井深度为6 875~8 042m超深层泥页岩的纳米孔隙特征,并选取四川盆地及周缘地区从地表到5km左右的样品组作为对比,探索深埋藏作用对泥页岩孔隙系统的影响。研究发现,X井志留系龙马溪组、奥陶系五峰组及下寒武统筇竹寺组超深层泥页岩32个样品的孔隙特征相似,孔隙类型以有机质孔、粒间孔为主,孔隙形态以狭长-裂缝型为主。N_2等温吸附线类型为IV-H3型,QSDFT孔径分布显示其纳米孔隙主要分布于4~16nm段,BET比表面积为8.63~16.13m2/g。与对照组样品相比,X井超深层泥页岩的孔径分布更加分散,微孔体积和微孔比表面积更小,介孔/微孔的体积比值及介孔/微孔的比表面积比值比非超深层泥页岩均具有数量级的优势。X井超深层泥页岩的孔隙特征主要受埋藏深度控制,深埋藏作用会使泥页岩孔径缩小并改变孔隙的形态。  相似文献   

10.
以K_2CO_3为活化剂,辣椒秸秆为原料制备活性炭,研究活化温度、活化时间、浸渍比和浸渍时间等影响因子对活性炭孔结构的影响.以比表面积、总孔容及碘吸附值为表征指标,对活性炭孔结构进行分析.结果表明,在给定的取值范围内,随着影响因子值的增加,比表面积和碘吸附值都呈现先升高后降低的趋势.在800℃活化温度、120min活化时间、2∶1浸渍比、24h浸渍时间的最佳条件下,制备的活性炭比表面积和碘吸附值的最大值分别达到1 753.983m~2/g,1 754mg/g,总孔容为0.893cm~3/g,平均孔径2nm,微孔率达84%.  相似文献   

11.
碱炭比对活性炭孔结构及电容特性的影响   总被引:2,自引:0,他引:2  
以酚醛树脂为原料、KOH为活化剂制备双电层电容器用高比表面积活性炭.考察KOH与酚醛树脂炭的质量比对所制得的活}生炭的吸附性能、孔径分布和比电容的影响.实验结果表明,随着碱炭比的增大,所得活性炭的BET比表面积、总孔容积和中孔容积不断增大,碘吸附值和亚甲基蓝吸附值也不断增大,比电容则先增大后减小并在碱炭比为4时达到最大值74.2F/g.以这种高比表面积活性炭组装成的电容器具有良好的充放电性能和循环性能,既能在大电流下快速充放电也能在小电流下缓慢充放电。  相似文献   

12.
讨论了用聚丙烯腈(PAN)基中空纤维为原料,采用KOH活化法制备中空活性炭纤维(ACHF)的活化过程。考察不同KOH质量浓度对中空活性炭纤维性能的影响。测量了比表面积和得率,孔径分布,用碘吸附值、亚甲基兰吸附值测定了中空活性炭纤维的吸附性能,用SEM观察了其表面结构。结果显示,KOH活化法得到的中空活性炭纤维具有窄的孔径分布,较大的比表面积和较高的得率。  相似文献   

13.
The activated carbon(AC)was prepared from Solidago Canadensis(SC),an alien invasive plant.The plant was firstly carbonized under nitrogen at 400 ℃ for 90 min in an electrical furnace,and then the carbonized product was activated with KOH through microwave radiation.Effects of KOH/C ratio,microwave power,microwave radiation time on the adsorption capacities and yield of AC were evaluated.It indicated that the optimum conditions were KOH/C ratio 2 g/g,microwave power 700 W,and microwave radiation time 6 min.The carbonation process of SC was analyzed by thermogravimetry(TG).The pore structural parameters and surface functional groups of the AC were characterized by nitrogen adsorption-desorption and Fourier Transformed Infrared Spectroscopy(FTIR),respectively.The activation yield,the surface area,the average pore size,and the average micropore size of AC prepared from optimum conditions were 53.75%,1 888 m2/g,0.567 nm,and 0.488 nm,respectively.The adsorption amounts of AC were 302.4 mg/g for methylene blue and 1 470.27 mg/g for iodine.  相似文献   

14.
以山西阳泉无烟煤为原料,NaOH为活性剂,采用化学活化法对煤基高比表面积活性炭的制备进行实验分析研究,着重考察了碱炭质量比、活化温度和活化时间对活性炭吸附性能的影响。结果表明,在碱炭比为4、活化温度为800℃、活化时间为1 h的条件下,可以制得比表面积为2 637 m2/g、总孔容为1.36 cm3/g、碘吸附值为2 893 mg/g、亚甲蓝吸附值为476 mg/g的煤基高比表面积活性炭。  相似文献   

15.
以酒糟渣为原料,采用浓酸炭化法,KOH活化法制备了活性炭。考察了活化温度、活化时间、碱炭质量比以及酒糟渣/KOH质量比对活性炭的影响。采用SEM、BET、FT-IR、XRD对其物化性能进行了表征分析。结果表明:在活化温度为800℃、活化时间为3h、碱炭质量比为3:1、酒糟渣/KOH质量比为4:1时制备的活性炭性能最优。该酒糟渣活性炭吸附孔容为0.88248cm3/g,DFT比表面积为3654.9m3/g,碘吸附值为2216.3mg/g,亚甲基蓝吸附值为389.40mL/g。  相似文献   

16.
以废料柚子皮为原料,ZnCl2为活化剂,采用微波辐射法制备了活性炭.采用正交实验研究了活化剂浓度、微波功率和活化时间对活性炭得率和吸附性能的影响.同时采用美国ASAP-2020吸附仪测定了所制备活性炭的Na吸附脱附等温线和孔径分布,采用红外光谱分析了样品的表面官能团,采用扫描电镜观察了样品的表面形貌.结果表明:ZnCl2质量浓度为50%,微波功率为850W,活化时间为8min工艺条件下制得的活性炭碘吸附值为1024mg/g;亚甲基蓝吸附值为160mL/g,产率为34.5%;比表面积为1490mm/g,总孔容为1.574cm^3/g,平均孔径为4.225nm.该活性炭为中孔型,比市售活性炭有更加发达的孔隙结构及更多的表面含氧基团,吸附性能优于市售活性炭.  相似文献   

17.
以晋城无烟煤为原料,先经浮选和酸洗脱灰,得到灰分1.2%的超低灰无烟煤,再将其与活化剂KOH按比例混合、粘结成型,并经活化处理制备高比表面积活性炭。主要考查了碱炭比、活化温度和活化时间对活性炭比表面积及收率的影响。结果表明,晋城超低灰无烟煤制备高比表面积活性炭的最佳工艺条件为:碱炭比5∶1,活化温度800℃、活化时间1 h,活性炭的BET比表面积为1 800.71 m2/g,孔径大小分布于0.3~5 nm之间,以微孔为主。  相似文献   

18.
天然气是一种清洁能源,作为汽车代用燃料以及从天然气开采地到各用户单位之间的运输,都需要有效的存储技术.天然气水合物(NGH)能够降低甲烷存储的成本,而多孔材料孔内生成气体水合物能够有效提高储气密度,本研究目的是合成在孔内能够生成甲烷水合物的低成本高性能吸附剂.首先以农业废弃物玉米芯为原料,采用KOH活化法制备活性炭,其湿储甲烷最优合成条件为:在400,℃炭化30,min,碱炭质量比5∶1、850,℃活化1.0,h合成出C-8高性能活性炭,其孔容达到2.264,cm^3/g,比表面积为2 993,m^2/g,孔径分布主要集中在2~3,nm.合成的C-8是非常好的甲烷湿储吸附剂,在水炭比为3.68时在9.40,MPa下CH4达到最大吸附量为69.66%,是其干燥样品最大吸附量的3.25倍,并可以在较大压力范围内使存储的甲烷提供平稳的放气量,有望作为新型的甲烷水合物存储吸附剂应用于天然气汽车上.  相似文献   

19.
采用硝酸(HNO_3)和氢氧化钠(Na OH)对活性炭表面进行改性,并考察其对乙酰水杨酸(ASP)的吸附性能。借助傅里叶红外光谱(FTIR)和扫描电镜(SEM)对改性活性炭结构特性进行表征,考察孔隙结构和官能团与吸附性能的关系,推断改性活性炭中对ASP起主要作用的官能团是含氧官能团。结果表明,两种改性活性炭对ASP均有良好的吸附效果;与Freundlich方程相比,吸附过程更适合用Langmuir方程来进行描述;也表明了活性炭对ASP的吸附属于单分子层吸附。改性后活性炭的最大吸附量可达到96.129 8 mg/g,且吸附过程更符合二级动力学方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号