首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以酒糟渣为原料,采用浓酸炭化法,KOH活化法制备了活性炭。考察了活化温度、活化时间、碱炭质量比以及酒糟渣/KOH质量比对活性炭的影响。采用SEM、BET、FT-IR、XRD对其物化性能进行了表征分析。结果表明:在活化温度为800℃、活化时间为3h、碱炭质量比为3:1、酒糟渣/KOH质量比为4:1时制备的活性炭性能最优。该酒糟渣活性炭吸附孔容为0.88248cm3/g,DFT比表面积为3654.9m3/g,碘吸附值为2216.3mg/g,亚甲基蓝吸附值为389.40mL/g。  相似文献   

2.
以K_2CO_3为活化剂,辣椒秸秆为原料制备活性炭,研究活化温度、活化时间、浸渍比和浸渍时间等影响因子对活性炭孔结构的影响.以比表面积、总孔容及碘吸附值为表征指标,对活性炭孔结构进行分析.结果表明,在给定的取值范围内,随着影响因子值的增加,比表面积和碘吸附值都呈现先升高后降低的趋势.在800℃活化温度、120min活化时间、2∶1浸渍比、24h浸渍时间的最佳条件下,制备的活性炭比表面积和碘吸附值的最大值分别达到1 753.983m~2/g,1 754mg/g,总孔容为0.893cm~3/g,平均孔径2nm,微孔率达84%.  相似文献   

3.
核桃壳真空化学活化制备活性炭   总被引:2,自引:0,他引:2  
采用真空化学活化法,以核桃壳为原料,氯化锌为活化剂制备活性炭,探讨体系压力、活化温度、浸渍比对活性炭比表面积、孔径分布、碘值和亚甲基蓝值以及表面性质的影响。研究结果表明,30 kPa时制备的活性炭其比表面积和总孔体积比常压条件时分别提高了27%和25%;在低压条件下有利于微孔的形成,在高浸渍比的条件下有利于中孔的形成。在体系压力为30 kPa,活化温度为450℃,浸渍比为2.0时,所得活性炭的BET比表面积为1 800 m2/g,总孔体积为1.176 cm3/g,等电点为9.15,碘吸附量为1 050 mg/g,亚甲基蓝吸附量为315 mg/g。  相似文献   

4.
生物炭材料的制备及其应用效果研究   总被引:1,自引:0,他引:1  
研究以小麦秸秆、水稻秸秆和油茶果壳为原料,采用水蒸气活化和磷酸再活化的工艺,制备出性能优良的生物炭样品,分析麦秆、稻秆和油茶果壳生物炭样品的性能以及制备条件对生物炭性能的影响。研究结果显示,试验制备得到的麦秆生物炭,其亚甲基蓝吸附值为225 mg/g,碘吸附值为838 mg/g,焦糖为120%,比表面积为1 279 m2/g,孔容为1.36 m3/g,中孔率为76.6%,而稻秆生物炭的炭亚甲基蓝吸附值为215 mg/g,碘吸附值为815 mg/g,焦糖100%,比表面积为967 m2/g,孔容为1.23 cm3/g,中孔率为84.6%,2种原料制备的生物炭与市售生物炭的性能指标相近;油茶果壳生物炭对亚甲基兰和碘的最大吸附值分别为330 mg/g和1 326 mg/g。本研究制备的油茶果壳生物炭的主要质量指标均达到或超过了净水用活性炭国家标准。本研究表明,小麦秸秆、水稻秸秆和油茶果壳可以作为制备优质生物炭的原料。  相似文献   

5.
周颖 《石河子科技》2015,(3):38-40,43
选用新疆独山子地区石化厂石油焦作为原材料,用KOH作为活化剂,采用化学活化法制备超级活性炭。制取过程中分别列举了碱炭比值、活化作用时间、活化维持温度等工艺参数对活性炭碘吸附值的影响;利用液氮吸附法对活性炭的比表面积、孔容孔径分布进行了表征。结果表明:在制备超级活性炭的过程中,碱炭比、活化温度和活化时间等条件起到关键作用,当碱炭比为4,活化温度为800℃时,活化时间为1.5h时,可以制得比表面积为2 411m2/g,孔容为1.11cm3/g,碘吸附值为2 536mg/g的石油焦基活性炭。  相似文献   

6.
以山西阳泉无烟煤为原料,NaOH为活性剂,采用化学活化法对煤基高比表面积活性炭的制备进行实验分析研究,着重考察了碱炭质量比、活化温度和活化时间对活性炭吸附性能的影响。结果表明,在碱炭比为4、活化温度为800℃、活化时间为1 h的条件下,可以制得比表面积为2 637 m2/g、总孔容为1.36 cm3/g、碘吸附值为2 893 mg/g、亚甲蓝吸附值为476 mg/g的煤基高比表面积活性炭。  相似文献   

7.
KOH活化石油焦制备工艺对活性炭吸附性能的影响   总被引:3,自引:0,他引:3  
以固-固混合方式,用KOH活化石油焦制备了高比表面积活性炭,研究了活化温度、碱炭比、原料粒度、活化时间、预处理温度及氮气流速等因素对活性炭的碘值和亚甲基蓝吸附值的影响,并用液氮吸附法分析了高比表面积活性炭的孔隙结构.结果表明:活化温度、碱炭比、原料粒度、活化时间,以及中间处理温度和氮气流速对活性炭的碘值和亚甲基蓝吸附值均有明显的影响;在一定的条件下,可制备出比表面积大于3000m2/g、比孔容积达1.80cm3/g、碘吸附值为2714mg/g、亚甲基蓝吸附值为510mg/g的活性炭.活性炭的吸附特性可以通过石油焦原料的改性和各种工艺条件的优化进行调控.  相似文献   

8.
采用活化法制备土霉素菌渣活性炭(菌渣炭),并用于处理低浓度含铬废水。经过组分测定可以看出土霉素菌渣含有较高的挥发分,灰分含量较低;元素分析中C、O元素的含量较高,表明土霉素菌渣含有大量的有机物和菌体蛋白;BET测得菌渣炭的比表面积、孔容和孔径都较大,通过扫描电镜可观察出菌渣炭具有较多的微孔和中孔,有利于对Cr(VI)定的吸附。通过单因素实验确定在初始Cr(VI)浓度为2mg/L时菌渣炭对Cr(VI)的最佳吸附pH、吸附剂投加量、吸附时间分别为4、0.5g/L、 50min, Cr(VI)的最高去除率为96.2%。热力学和动力学分析结果表明菌渣炭对Cr(VI)的吸附符合Freundlich等温吸附模型和准二级动力学模型。菌渣炭的饱和吸附量为17.93 mg/g,对Cr(VI)的吸附速率与吸附剂上未被占据的吸附位点的平方成正比。用1mol/L的HCl对菌渣炭进行洗脱再生,经过4次循环实验Cr(VI)的去除率为77.1%,剩余溶液中Cr(VI)浓度为0.459 mg/L,满足污水综合排放标准0.5 mg/L,菌渣炭的饱和吸附量为2.018 mg/g,表明菌渣炭的再生性能良好。  相似文献   

9.
为解决商品微孔型活性炭在水处理中所面临的问题,利用优选煤配煤方案及对制备工艺的改进,调节活性炭的孔隙结构和吸附性能,制备新型净水用高效活性炭.研究了新型炭的物理化学特性及其在生物增强活性炭中的净水效能与功能菌载持能力.结果表明,使用10%大同煤和90%宁夏煤进行配煤,通过活化前氧化及深度活化工艺(GY-4)的引入,工艺GY-4所制备的炭样CGY-4具有较高的吸附性能指标与中孔容积,其碘值为1 185 mg/g,亚甲蓝值为271.8 mg/g,SBET为1 316 m2/g;总孔容积Vtotal为1.149 cm3/g;中大孔率达到65.59%.与普通商品炭ZJ15相比,CGY-4所构建生物增强活性炭工艺(BC-CGY-4)在长期运行过程中对水中CODMn的处理效果提高了17.35%;CGY-4表面的生物量比ZJ15平均增加27.97%.  相似文献   

10.
微波辅助制备甜菜渣活性炭   总被引:1,自引:0,他引:1  
为了使甜菜渣得到更加充分有效的利用,本文探究了以甜菜渣为原料、氯化锌为活化剂、微波辅助制备甜菜渣活性炭的可行性。本文研究了甜菜渣和氯化锌溶液的比例(料液比)、氯化锌浓度、微波功率和辐照时间对活性炭吸附性能和产率的影响,并用氮气等温吸附、红外光谱和扫描电镜分析了最优制备条件下活性炭的比表面积、表面官能团和微观孔结构,得出其制备的最佳工艺条件为:料液比1∶6,氯化锌浓度30%,微波功率700 W和微波时间10 min。相应的活性炭的碘吸附量为1127.57 mg/g,亚甲基蓝吸附量为217.7 mg/g,产率为25.9%,BET比表面积为927.36 m2/g,总孔容为0.39 cm3/g,且表面具有含氧官能团和较好的孔结构。实验结果证实,以甜菜渣为原料、氯化锌为活化剂的微波辅助制备甜菜渣活性炭是可行的,为开发甜菜渣的高附加值产品提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号