首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
无砟轨道复合不平顺对高速行车的影响   总被引:1,自引:0,他引:1  
轨道复合不平顺是由多种垂、横向不平顺叠加而成的复杂随机波,是影响轮轨动态作用和行车稳定的重要因素.为研究高速铁路无砟轨道复合不平顺对行车品质的影响,考虑轮轨间复杂接触关系建立了车辆轨道空间耦合动力学模型,分析了轨向-水平、轨向-高低、轨距-水平、轨距-高低4种复合不平顺的动力影响.结果表明:随着复合不平顺幅值的增加,轮轨力、车体加速度、轮重减载率、脱轨系数等均会增大;轮轨力、舒适性指标和安全性指标随着复合不平顺波长的增大而减小;复合不平顺幅值组合变化时,车辆动力响应对水平、高低不平顺幅值变化的敏感程度高于轨向、轨距不平顺幅值变化.长波不平顺激扰频率与车体自振频率一致或接近时,车体会出现一定的谐振,垂、横向振动加速度有所增加.  相似文献   

2.
基于耦合动力学理论,利用有限元方法建立了车辆-轨道耦合系统振动分析模型,输入不同截止波长的不平顺数据进行动力仿真计算,以确定轨道不平顺管理波长范围.高低不平顺主要影响车体的沉浮和点头运动,引起车体垂向加速度增大;轨向不平顺主要影响车体的侧滚和摇头,引起车体横向振动加速度增大.长波不平顺的影响主要体现在车体振动上,因此本文选定车体加速度作为确定不利波长的判定指标,对提速线路200km/h和250km/h速度下轨道不平顺波长管理的范围进行了探讨,并提出了提速线路轨道不平顺波长管理的建议.  相似文献   

3.
基于车辆-轨道耦合动力学理论,根据车辆-轨道垂向耦合系统的振动传递特性,计算轨道高低不平顺敏感波长的精确值,研究轨道高低不平顺敏感波长的分布特征以及车辆运行速度对敏感波长的影响规律。研究结果表明:基于车辆-轨道垂向耦合系统的振动传递特性,可以得出轨道高低不平顺敏感波长的精确值;轨道高低不平顺敏感波长可以分为2个部分,其中,一部分为波长大于5 m的中、长波段,该波段中敏感波长分布较离散,另一部分为波长小于5 m的短波段,该波段中敏感波长分布较密集;车辆运行速度对敏感频率及敏感波长有较大的影响,随车速的增大敏感频率出现"频移现象",具体表现为敏感频率随车速的增大而增大;但是敏感波长并不是随车速的增大而单调递增的,而是由敏感频率的"频移"速率与车速增大速率的比值决定的。  相似文献   

4.
轨道随机不平顺与车辆动力响应的相干分析   总被引:7,自引:2,他引:7  
介绍了现场实测的轨道随机不平顺数据和根据轨道不平顺模拟的轨道不平顺随机时域函数 ,作为车辆 -轨道系统动力仿真计算的激扰输入 ,计算轮轨作用力及车辆的各种响应 .利用中国高速低干扰轨道不平顺谱、中国某干线实测轨道不平顺谱和美国六级轨道不平顺谱作为仿真计算的激扰 ,计算了各种速度下的轮轨力和车辆动力响应 ,并进行了比较 .最后通过对轨道不平顺与车辆动力响应的相干性分析 ,得出了轨道随机不平顺影响轮轨作用力和车辆运行品质的最不利波长  相似文献   

5.
为研究扣件失效对地铁整体道床轨道及车体振动性能的影响,基于结构动力学理论建立地铁列车-整体道床(隧道衬砌)耦合分析模型,采用弹簧阻尼模拟土体,采用模态分析和Newmark法求解动力响应,研究列车速度、扣件失效数量和轨道不平顺对地铁车轨振动的影响。研究结果表明:扣件失效会加剧系统振动响应,对车体加速度影响较显著,但对钢轨位移和轮轨接触力的影响相对较小;列车速度对钢轨位移和邻近扣件反力的影响较小,对车体加速度和衬砌加速度影响显著;随着失效扣件数量增加,车体竖向加速度等系统动力响应增幅明显;在考虑轨道不平顺的情况下,扣件失效会加大钢轨加速度和衬砌加速度的振级,而车体竖向加速度可作为确定失效扣件位置的敏感指标;扣件失效会增大邻近扣件的受力,造成二次失效,影响乘客舒适性和周围环境振动,需要及时检修,保障地铁正常运行。  相似文献   

6.
轨道不平顺作为车-桥耦合振动的主要激励源,直接影响桥梁及高速列车运行的安全性和舒适性.为研究轨道不平顺中短波分量对列车-简支梁桥耦合系统动力响应的影响规律,以高速铁路32m简支箱梁为例,采用德国高速低干扰轨道不平顺谱生成轨道不平顺样本,建立了列车-轨道-桥梁耦合系统空间动力学分析模型.对比分析了5种不同最短截止波长的轨道不平顺样本对耦合系统振动响应的影响规律.研究结果表明:轨道不平顺样本中1m左右的短波长分量会显著增加轮轨力、轮重减载率、脱轨系数和桥梁跨中加速度,但对桥梁跨中位移、轮轨偏移量和车辆振动加速度的影响较小;1~2m的短波长成分是引起轮重减载率超标的主要因素,减少轨道不平顺中1~2m的短波长分量可以有效提高列车行车安全性指标.  相似文献   

7.
地铁是城市交通的重要组成部分,而扣件系统是地铁轨道结构的关键部件,起到固定钢轨、减振降噪的作用。为分析地铁e型弹条扣件的疲劳性能,基于车辆轨道动力学理论,通过多体动力学软件UM建立了车轨耦合模型,研究了车辆速度、轨道不平顺类型以及曲线半径与钢轨动力学响应的关系;并通过有限元软件ABAQUS对扣件系统进行了仿真计算,将车轨耦合动力分析得到的钢轨位移作为疲劳荷载,采用应力疲劳计算的方法对弹条的疲劳寿命进行了预测和分析。结果表明:钢轨位移响应受不平顺类型和车辆速度的影响较小,而加速度响应对两者则比较敏感;轨道曲线半径的改变,对内轨位移的影响相对明显,随着半径的减小,内轨的位移时程曲线出现明显的上移,同时对加速度的影响也增大,内轨加速度峰值呈增大趋势;基于此模型计算的弹条疲劳寿命为2.14×107次,寿命最低处位于弹条后拱小圆弧段,与实际断裂位置相吻合;弹条初始安装扣压力对弹条疲劳寿命的影响很大,随着初始安装扣压力的增大,弹条的疲劳寿命不断减小,且减小的速度趋于增大,为确保弹条扣件处于良好的工作状态,初始扣压力应当控制在11~15 kN范围内。  相似文献   

8.
采用改进的车-桥耦合系统迭代计算模型,建立了基于虚拟激励法(PEM)的列车-轨道-桥梁竖向随机振动分析模型.采用虚拟激励法将轨道不平顺精确地转化为一系列竖向简谐不平顺的叠加,并运用分离迭代法求解车-桥耦合系统振动方程.以CRH2高速列车通过5跨简支梁桥为例,对改进的车-桥耦合系统迭代计算模型的计算精度和效率进行了验证.结果表明:在保持与传统模型相同计算精度的前提下,改进模型能使计算效率提高5倍左右.通过对列车-轨道-简支梁桥竖向随机振动响应中确定性激励引起的均值和轨道不平顺引起的均方根进行分析可知:桥梁竖向位移主要受列车自重控制,轨道不平顺引起的桥梁竖向位移影响很小;桥梁和车体竖向加速度受轨道不平顺影响显著,改善线路条件能有效提高列车的乘车舒适性;同时,车速越高,桥梁和车辆随机响应的均方根越大,由轨道不平顺引起的耦合系统振动响应的离散度越大.  相似文献   

9.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

10.
基于列车-轨道耦合动力学理论,建立列车-板式无砟轨道-路基三维有限元耦合动力学模型,并对建立的三维有限元耦合动力学模型进行相应的程序验证。运用建立的耦合动力学模型,对列车在路基上板式无砟轨道线路上高速行驶时,在线路平顺工况和各种不平顺工况下,无砟轨道各部件动力特性和相应动力系数进行理论研究。研究结果表明:在线路平顺状态下,车辆轮载及无砟轨道各部件动力响应很小,动力系数不超过1.2;在线路中长波随机不平顺激扰下,轮载动力系数接近2,无砟轨道各部件动力系数在1.70~2.06之间,轮载动力系数和无砟轨道各部件动力系数相差不大;短波不平顺对轮载动力系数有很大的影响,由于短波不平顺引起的振动在无砟轨道中衰减很快,其对无砟轨道上部部件动力系数的影响较大,而对无砟轨道下部部件动力系数的影响很小。  相似文献   

11.
分别建立了车辆-轨道-桥梁系统的垂向耦合振动模型和空间耦合振动模型,并通过功率普密度得到轨道高低不平顺的时域模拟样本,以其作为激励,分析两种模型下车辆-轨道-桥梁耦合振动系统的振动响应。通过对比相同轨道高低不平顺激励下垂向振动模型和空间振动模型的垂向振动响应计算结果,分析了两种模型的优缺点和适用性。  相似文献   

12.
基于车辆-轨道耦合动力学理论,应用有限元方法建立车辆-CRTSIII型板式无砟轨道-路基系统垂向耦合动力学模型,对高速车辆通过钢轨焊缝不平顺的动力学响应进行了仿真分析,并对比了不同形式钢轨焊缝不平顺对系统的影响。有限元计算结果表明:高速行车条件下,钢轨焊缝不平顺会引起车辆、轨道、路基系统动力学性能不同程度的变化,引起轮轨力响应增大,对与不平顺直接接触的轮对和钢轨振动产生较大影响,对行车舒适性影响有限。不同形式的焊缝不平顺对系统影响程度各有不同,凹、凸型焊缝不平顺对动力特性的影响相对接近,凹型焊缝不平顺叠加一短波不平顺后,对轮对和轨道结构振动加速度影响明显,轨道结构应力增大,受力状态恶化。在高速铁路日常运营维护中,应重视钢轨叠加焊缝不平顺引起的冲击振动作用。  相似文献   

13.
采用轮轨时变接触刚度代替轮轨非线性接触力的动力效应,模拟轮轨之间的自然接触状态,将有限元理论和能量变分法用于建立车辆-轨道系统垂向统一方程。通过输入脉冲型短波及中、长波不平顺激励,计算系统的动力响应,验证本文模型的正确性,并与国内常用的轮轨密贴模型进行比较分析。研究结果表明:轮轨密贴模型在分析中、长波不平顺激励工况下的系统动力响应是可行的;但在短波不平顺激励工况下,轮轨之间的刚性处理方法将放大短波激励效应,车轮"跳轨"处理方法尚需改进。  相似文献   

14.
根据某高速铁路轨道的高低轨道不平顺实测数据,基于改进的welch周期图法计算原始高低轨道不平顺功率谱密度,从波长角度提出了功率谱密度的7阶多项式拟合谱模型.通过谱密度反演算法对高低轨道不平顺序列进行数值模拟.提出了基于上、下界限谱的轨道质量评判标准.实验结果表明,提出的拟合谱模型比高速铁路无砟轨道幂函数分段拟合模型更适合于该线路的谱分析.通过本文拟合谱与时速200 km/h等级提速线路拟合谱的比较,表明该线路在波长3.3~5 m波长范围内有不平顺的趋势.为轨道不平顺的评判和线路维修提供了建议.  相似文献   

15.
运行速度不断提升是当今高速列车发展的趋势;而车辆系统振动响应随运行速度的变化特征可作为衡量列车设计性能好坏的指标。采用多体动力学软件和有限元方法相结合,建立刚柔耦合的列车动力学模型;其中轨道不平顺激励中的动态不平顺部分采用实车实测数据标定。通过仿真,获得车辆系统在0~50 Hz频率范围内的振动响应随运行速度的变化特征。结果表明,随着运行速度的提高,车辆系统振动响应与平稳性指标呈现非单调的增长趋势。受轨道板长度为周期的动态不平顺激励影响,车辆在低速存在不利运行速度区域。  相似文献   

16.
轨道纵向刚度变化对快速列车轮轨受力的影响   总被引:4,自引:0,他引:4  
由于轨道刚度是铁路轨道设计的重要参数,直接影响到列车的运行安全和平稳性,因此运用车辆-轨道垂向系统统一模型和新型预测-校正数值积分法,对铁路快速列车以不同速度通过因道床和轨下垫层刚度变化而引起的动力不平顺轨道段时车辆和轨道的响应进行了仿真计算,干涉分析了轨道纵向刚度变化对铁路快速列车轮轨受力的影响。  相似文献   

17.
将轮轨力预估格式的迭代求解方法与子集模拟法相结合,给出了一种考虑轨道不平顺随机性的车轨耦合系统动力可靠度求解方法,从提高确定性响应求解效率和减少确定性响应求解次数两方面,提高了系统可靠度求解效率.算例以CRH2新造动车组为研究对象,获得车辆在直线轨道上的横向平稳性指标和曲线通过时的车轮脱轨系数分别超出各自限度值的失效概率.通过与直接Monte Carlo模拟(DMCS)对比,验证了所给方法的计算精度和效率.同时研究了不同波长范围内的随机轨道不平顺对车辆系统动力可靠度的影响,获得了与已有研究文献较为一致的规律,进一步验证了方法的正确性.  相似文献   

18.
运用弹性系统动力学总势能不变原理及形成矩阵的"对号入座"法则,建立列车-板式无砟轨道-路基竖向振动方程组,分析列车高速运行时,短波随机不平顺对列车-板式无砟轨道-路系统振动特性的影响,并对不同种类随机不平顺对列车-板式无砟轨道-路基系统动力特性的影响进行对比研究.研究结果表明:短波随机不平顺对车体垂向加速度、路基竖向压应力影响很小,对扣件竖向压应力、轨道板及底座板弯曲应力有一定的影响,对轮轨垂向力、钢轨振动加速度、轨道板振动加速度、底座板振动加速度和CA砂浆压应力则有显著的影响,影响超过中长波随机不平顺.研究车体及路基动力特性时可以不考虑短波随机不平顺,研究无砟轨道各部件动力特性时,则应考虑短波随机不平顺.  相似文献   

19.
沪昆线与金温线轨道不平顺谱的分析   总被引:1,自引:0,他引:1  
首先比较了国内轨道不平顺统计谱与国外轨道标准谱的差异.根据沪昆和金温两条线路的轨道不平顺检测数据,利用Matlab编程计算功率谱(PSD)和轨道质量指数(TQI),结果表明,沪昆线路轨道不平顺功率谱要明显好于美国六级铁路的不平顺谱,而金温线轨道谱接近于美国五级铁路的不平顺谱.利用相干函数对轨道不平顺与车体的垂向和横向振动加速度进行相干分析,并结合车体加速度功率谱分析,归纳出轨道不平顺不利波长的范围,为轨道的养护维修和管理提供了理论和实践指导.然后再对各项轨道不平顺谱值进行积分,得出TQI单项指数与各轨道不平顺谱面积值具有很好的相关性,从而验证了用功率谱评价轨道质量的可靠性.最后建议将轨道不平顺功率谱作为控制提速线路轨道质量的主要指标之一.  相似文献   

20.
为了得到轨道高低不平顺激励下的车体振动响应,并对车体振动情况做出评价,进而分析车辆的乘坐平稳性等级,首先建立了车体的垂向振动力学模型并列出运动微分方程,然后对轨道垂向不平顺进行了描述,并将轨道不平顺的垂向空间域功率谱转换为时频域功率谱,计算出轨道不平顺的位移时间序列,再利用Pro/E软件建立了车厢的三维模型,用动力学仿...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号