首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
针对脱机手写体汉字特征复杂和类别多样的特点,基于SVM数学模型,采用了一种不确定性二叉树与SVM相结合的分类识别方法设计了一种多类分类器,该设计方法在保证识别准确率的情况下大大减少了支持向量机的数量,简化了二叉树模型,能快速辨识并删除多余的枝节,并具有一定的容错率,加快了辨识速度。实验结果表明,采用不确定性二叉树SVM设计的多类分类器有效地降低了拒识率和漏识率,保证了识别的准确率,提高了识别速度。  相似文献   

2.
手写体汉字特征提取的研究   总被引:2,自引:0,他引:2  
在手写体汉字识别的研究中,汉字的特征提取可以说是整个手写体汉字识别系统中最重要的一部分。本文针对手写体汉字特点,找到了能充分反应手写体汉字特点的三种特征井加以提取;同时提出了将汉字分解为部件来识别的观点。实验结果表明所提取的特征兼顾了提取方法的方便性和特征的稳定性;这些特征能有效地识别手写体汉字。  相似文献   

3.
本文提出了一种无需细化过程的脱机手写体汉字字符的识别方法,并且提出了从脱机手写体汉字中识别动态信息的方法,从而将脱机汉字字符识别问题转变为联机识别问题。  相似文献   

4.
提出了一种基于笔划的一级分类,笔划特征二 级分类的新方法来实现联机手写体汉字的识别。  相似文献   

5.
用于手写体汉字识别的汉字结构模型   总被引:4,自引:0,他引:4  
针对手写体汉字识别问题,选取笔段和笔划作为基元,分析手写体汉字的组成规律和变形规律,提出了两种汉字结构模型:笔段中心点模型和笔划关系矩阵模型,以及基于模型的分类依据和识别方法.根据所提出的模型,采用两级分类方案构造汉字识别系统,粗分类采用笔段中心点法,细分类采用笔划关系矩阵法.实验表明模型是有效可行的.  相似文献   

6.
对自然手写体汉字联机识别系统中笔画和字根提取问题作了深入研究,提出并改进了有关策略和算法实现。经深入分析和测试结果表明,由于充分考虑了自然手写体汉字的书写习惯和结构特征,技术策略和算法实现具有高稳定性和变形容忍度。  相似文献   

7.
文章研究了一种基于过程神经网络的脱机手写体汉字特征提取方法。采用描述汉字整体构架性和可拆分性的笔划类型、笔划位置、笔划顺序以及拓扑结构特征的融合,给出了一种脱机手写体汉字特征表征方法以及冗余容错表征形状。采用过程神经网络模型的横向时间累积和纵向空间加权求和方法,模拟手写体汉字从左到右和从上到下的书写过程,给出了提取脱机手写体汉字特征的算法与步骤。采用粒子群优化学习算法保证过程神经网络的全局学习能力和收敛能力,建立了手写体汉字特征知识数据结构表,对SCUT-IRAC中的手写体汉字特征提取进等了仿真实验,结果表明该方法具有良好的“认知”手写体汉字特征的能力。  相似文献   

8.
特征选取和分类器设计是字符识别系统设计的.本文针对手写体汉字识别提出了依据不同的分类要求,分别选取不同的汉字特征,而后输入BP神经网络多分类器进行识别的设计方法.实验结果表明,该方法用于手写体汉字识别是行之有效的.  相似文献   

9.
基于笔划方向特征和非对称分布的手写体汉字识别模型,提出一种从手写体汉字骨骼图像上提取分叉点的有效改进算法,保证笔划提取的可靠性,并直接从笔划结构上计算统计识别特征矢量;采用主向量空间的非对称参数分布模型计算距离测度.实验表明,基于笔划方向特征和非对称分布的统计识别模型具有优良的识别性能.  相似文献   

10.
在实现结构分析法识别手写汉字时,笔划抽取是关键所在。本文提出了一种直接从手写汉字点阵中抽取笔划特征的新算法。该算法具有算法简单、笔划抽取速度快、正确率高和抗干扰能力强的特点。这种算法已用于在PC/AT机上实现的成页手写体汉字(楷体)识别系统中,效果极为满意。  相似文献   

11.
提出一种基于文字结构特征的神经网络手写汉字识别策略 ,根据所提取的文字笔画方向、基本轮廓和交叉点等特征 ,采用基于自组织神经网络的模式聚类该方法完成正规手写文字的识别 .该方法提取的笔画轮廓十分准确有效 ,对手写汉字的约束少 ,可识别的汉字数量大 ,在仿真实验中有效地识别了绝大多数手写汉字  相似文献   

12.
提出了利用BP神经网络方法来实现手写数字识别系统的方案。手写数字图像通过颅处理后,在特征提取方面采用两种适应性较强的特征提取方法,即18点特征提取方法和手写数字笔画特征提取法.不但减少了提取时间。而且提高了手写数字图像的识别率。利用Visual C++编写手写数字识别系统,得到了较好的识别结果。  相似文献   

13.
提出一种改进手写字体特征的提取方法:将传统的PCA特征方法与13点特征方法进行综合,得到一种PCA+4点的特征提取算法,然后通过BP神经网络进行训练识别.实验仿真表明这种改进的方法比PCA特征提取及13点特征提取的识别率高,特别在手写变化大、手写速度快等方面优势更加明显.  相似文献   

14.
介绍了手写体汉字特征提取的基本概念,采用了一种叠合网络加权笔画提取方法用于提取有限集汉字特征。通过对径向基函数网络(RBF网络)的模型分析,提出了一种组合RBF网络分类器应用于有限集手写体汉字识别,并利用结合遗传算法和模拟退火算法的混合优化策略进行RBF分类器的训练。  相似文献   

15.
一种新的手写体字符识别算法   总被引:2,自引:0,他引:2  
研究模式识别的核心问题——特征抽取.基于偏最小二乘(Partial Least Squares,简称PLS)回归和特征融合的思想,提出了一种组合特征抽取的新方法并将之用于手写体字符识别中.在PLS建模阶段,为了提高PLS成分(特征)的抽取速度,提出了一种非迭代PLS算法.在特征融合阶段,用所抽取的PLS成分特征组成模式的相关特征矩阵,并依此相关特征矩阵进行分类.在Concordia University CENPARMI手写体阿拉伯数字数据库上的试验结果证实了该方法的有效性和鲁棒性,其分类结果优于基于单一特征的FSLDA方法的分类结果.另外,与已有的迭代PLS算法相比,所提出的非迭代PLS算法的复杂度和特征抽取的速度均占有优势.  相似文献   

16.
在相对梯度直方图特征的基础上,结合Fisher线性鉴别分析和角度距离相似性度量方法,提出了一种鉴别相对梯度直方图特征提取与分类方法。充分利用相对梯度直方图和鉴别分析的优势,使所得特征保留更多的对分类有利的信息;引入角度距离相似性度量,很好地克服了传统余弦相似性度量的缺陷,使人脸分类更准确。通过FERET、YaleB和PIE 3个人脸图像子集上的实验证实,鉴别相对梯度直方图特征提取与分类方法能显著提升图像梯度描述特征的分类精度,并对人脸的光照变化具有良好的健壮性。  相似文献   

17.
针对特征空间维数较高时,混淆交叉支持向量机树中间节点的学习结果可能包含冗余特征信息的情况,考虑各维特征之间的相互关系以及各数据点之间的相互关系对数据的分类影响,提出一种基于有监督局部线性嵌入的支持向量机树学习模型.考虑每个中间节点上需要不同的特征信息进行局部决策,分别对每个中间节点(包括根节点)上的样例进行有监督局部线性嵌入学习.实验以手写阿拉伯数字识别问题为例验证和分析了模型的结构和分类识别性能,与其他学习模型的对比结果表明,该模型能在有监督局部线性嵌入学习的基础上,以更精简的结构获得与其他学习模型可比的识别精确率.  相似文献   

18.
本文针对在手写字符识别中由于书写习惯和风格的不同造成字符模式不稳定的问题,提出了一种基于流形学习重建的手写体数字识别方法。该方法与传统的流行学习识别方法不同,传统的方法是先对待识别模式进行降维,然后再对降维后的特征进行分类识别;本文提出基于重建的LLE算法(简称RLLE)。该算法首先分别对每一类字符训练样本进行LLE降维,得到每一类字符降维后的向量。然后将待识别字符分别在每一类字符中进行降维,并依据该降维后的矢量在每一类中对字符进行重建。最后选取重建误差最小的为待识别的所属的类。通过对MINST字库的一系列实验表明该算法具有较高的识别率,同时该方法为手写体数字识别的研究提供了一条有效的新途径。  相似文献   

19.
良好的特征提取方法能减轻后续图像分类与识别的工作量。针对具体的分类问题提出了不同的特征提取方法,并在图像分类和识别任务上取得了较好的效果。然而,已有的基于传统方法的特征提取存在一些明显不足,即随着视觉任务规模的增大,直接利用这些传统方法进行特征分类,效果并不理想。提出的特征表达方法,在图像最基本特征基础上进行矢量量化、稀疏编码或其它表达以形成一幅图像最后的特征。着重介绍基于稀疏表示的特征分类算法并对其进行分析,最后探讨存在的问题和今后研究的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号