首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对汽车制动过程中防抱死制动系统(ABS)具有的非线性、时变性和不确定性,设计了以最佳滑移率为目标的滑模变结构控制器,并且采用径向基神经网络(RBF)实时调整滑模变结构控制器参数,以削弱常规滑模变结构控制的抖振现象。利用MATLAB/Simulink仿真平台搭建单轮车辆制动模型,并进行ABS控制策略的仿真实验。仿真结果表明:在指定路面上制动时,基于RBF神经网络的滑模变结构控制策略能够有效削弱常规滑模变结构控制输出的高频抖振,并能使车辆具有良好的制动效果。  相似文献   

2.
基于GRNN网络车辆方向盘转角识别方法   总被引:1,自引:0,他引:1  
为改善车辆的操纵安全性以及为自动转向系统和智能泊车系统的研究提供理论基础,本文给出一种新的汽车方向盘转角识别方法.建立了驾驶员—车辆闭环模型,并通过试验验证车辆模型.通过给定方向盘转角输入求解得到用于GRNN网络训练的车辆状态参数,运用GRNN网络建立以车辆状态参数来识别方向盘转角的映射模型.与RBF网络相比,GRNN神经网络具有更高的辨识精度.进行整车仿真,所建立的GRNN神经网络能较精确地识别方向盘转角并与仿真结果有较好的一致性.  相似文献   

3.
为提高高速大曲率工况下智能汽车的路径跟踪控制精度,保证车辆横摆稳定性和侧倾稳定性,提出基于最优前轮侧向力和附加横摆力矩协同的力驱动模型预测控制(MPC)路径跟踪控制策略。充分利用轮胎非线性动力学特性,提高控制器的响应性能,构建基于时变线性轮胎模型的路径跟踪控制系统状态空间方程,预测车辆状态信息。采用零点力矩法建立车辆侧倾稳定性约束条件,设计基于MPC的防侧倾路径跟踪控制器。CarSim与Matlab/Simulink联合仿真结果表明,该控制器在保证车辆横摆稳定性和侧倾稳定性的前提下,高速大曲率工况下的最大横向位置偏差和航向角偏差分别降低14.08%和4.80%,低附着高速变道工况下分别降低22.95%和16.77%,说明所提出的控制器可显著改善车辆路径跟踪效果。  相似文献   

4.
基于视觉的智能车辆模糊滑模横向控制   总被引:2,自引:0,他引:2  
以采用视觉导航的智能车DLUIV-1为对象,对智能车辆的横向控制方法开展研究.首先,建立基于视觉预瞄距离的车辆横向控制系统模型,利用包含速度等因素在内的预瞄运动学模型确定车辆的横向偏差和方位偏差.其次,针对横向控制的特点,提出了模糊和滑模相结合的智能车辆横向控制策略,综合考虑车辆当前的横向偏差和方位偏差,将二者融合后的综合偏差作为滑模切换函数的参数来设计滑模面,将滑模切换函数作为控制目标,利用模糊控制规则调整控制变量的大小来确保存在和到达条件成立,保证方向盘转动的稳定性.仿真结果表明该横向控制器能够保证智能车辆准确而且稳定地跟踪参考路径,且对模型参数的变化具有较强的鲁棒性.  相似文献   

5.
针对铰接式自卸车的转向特性,提出了一种基于驾驶员行为的神经网络无人驾驶控制方法.建立了以激光雷达、角度传感器为主要环境信息的采集系统,通过分析铰接式车辆转向特征建立铰接式自卸车运动学模型和动力学模型,利用ADAMS动力学软件建立车辆动力学模型并进行车辆稳态测试.建立基于最优预瞄控制的人工神经网络控制算法的驾驶员模型,通过ADAMS-Matlab/Simulink联合仿真验证模型.最后搭建真实巷道环境进行直线路段回正实验和曲线路径跟踪实验,结果显示,该控制模型在变曲率路段中,横向位置偏差小于可通过路径宽度的10%,航向角偏差优化90%,表明该神经网络驾驶员控制模型收敛速度快,稳态特性好,具有良好的无人驾驶能力.  相似文献   

6.
针对欠驱动船舶的路径跟随问题,提出了一种综合神经网络和滑模控制的控制方法.采用视线(LOS)制导方法解决船舶欠驱动问题,并设计了关于漂角的自适应状态观测器,将预测的漂角引入LOS以补偿漂角引起的稳态横向偏差;使用滑模控制方法实现航向控制,并用神经网络处理控制模型的不确定性问题;应用Lyapunov理论证明了控制系统的稳定性,同时通过对比仿真试验结果,验证了本文所提出控制器的有效性.  相似文献   

7.
针对永磁同步电机(PMSM)位置伺服控制系统的负载扰动、外部不确定性干扰和模型参数摄动的特点,常规PID控制策略难以达到满意的控制效果.利用滑模控制对系统扰动和参数变化不灵敏的优点,提出一种基于神经网络和滑模控制相结合的位置伺服优化控制策略.在常规滑模控制器设计的基础上,引入RBF神经网络调节滑模控制器的切换增益,削弱系统的抖振,并通过在系统中设计干扰观测器实现对扰动的补偿.仿真结果表明:与常规滑模控制和常规PID控制相比,不同参数下本文所提出的优化控制策略超调量最多降低22%,调节时间最多减少9.2 s,有效提高位置伺服系统的鲁棒性、抗干扰能力和跟踪精度,且系统抖振得到有效遏制.  相似文献   

8.
针对分布式电驱动整车差动转向问题,文章以线控转向机构作为转向执行机构,研究基于横摆角速度和车辆路径的综合反馈控制策略。采用MATLAB/Simulink和CarSim的联合仿真,设计滑模控制器和线性二次型调节器,重新分配四轮转矩,决策出合理的前轮附加转角,以保证汽车的行驶稳定性,并选取典型工况对控制策略进行仿真验证。仿真结果表明,基于横摆角速度的滑模控制器与基于路径的路径跟踪控制器的综合控制策略,相较于传统基于横摆角速度和质心侧偏角的滑模控制器,车辆实际横摆角速度与理想横摆角速度误差大幅下降;车辆路径与期望路径误差亦得到有效控制。  相似文献   

9.
针对一类欠驱动系统在系统不确定性和外界干扰条件下的稳定控制问题,文章提出了自适应神经网络滑模控制策略。利用基于径向基函数(RBF)的神经网络在线估计系统的不确定量,采用李雅普诺夫方法设计自适应算法在线调整神经网络的参数;同时,利用带自适应算法的神经网络调节滑模控制的增益来消除滑模控制中的输入抖振现象;并通过李雅普诺夫定理论证了系统的稳定性。与传统滑模控制策略的仿真结果对比证明了系统是全局渐进稳定的,且控制器具有很好的适应性和鲁棒性。  相似文献   

10.
针对四轮独立转向电动汽车转向系统成本高、但功能开发程度低的问题,提出一种车辆斜向行驶控制策略,优化四轮独立转向电动汽车换道过程中的行驶稳定性. 基于四轮独立转向电动汽车横向、纵向二自由度车辆模型,提出一种横纵向耦合轨迹跟踪控制方法,该方法基于线性时变模型采用模型预测控制(MPC)算法,对横向偏差、航向角偏差及纵向速度偏差进行闭环控制. 设计车辆稳定性控制器,包括横摆力矩控制器和转矩分配控制器,同时提高车辆轨迹跟踪精度和行驶稳定性. 最后搭建Simulink/Carsim/Prescan联合仿真平台,对四轮独立转向电动汽车双移线工况进行模拟换道仿真,仿真结果证明了斜向变道的可行性和横纵向耦合轨迹跟踪控制方法的有效性.   相似文献   

11.
针对风力机叶片经典颤振问题,采用RBF神经网络补偿滑模控制来控制风力机叶片的变桨运动。依据弹簧-质量-阻尼器的典型叶型截面模型以及变桨激励器的二阶模型,给出了系统的非线性气动弹性方程。滑模变桨控制通过控制叶片的变桨运动,达到抑制叶片颤振、保护叶片的目的,但是在系统到达滑模面后,滑模控制器会迫使系统沿滑模面做小幅度、高频率的运动,即出现抖振现象。RBF神经网络的自适应、自学习能力可以逼近非线性函数,采用神经网络对滑模控制器进行补偿。实验选取5组不同的基本结构参数进行模拟仿真,仿真结果表明:滑模控制器能够抑制颤振,但是在滑模控制器的输出端会出现剧烈抖振,RBF神经网络滑模控制能够保证系统的鲁棒性,不仅能够抑制颤振,而且能够降低抖振频率以及幅度。  相似文献   

12.
针对多电机控制系统存在响应性和同步性差的问题,以四轮独立驱动公铁两用车转向系统为被控对象,提出一种多永磁同步电机(permanent magnet synchronous motor, PMSM)协同控制策略。该控制策略采用偏差耦合的电同步控制方式,对多电机转角误差进行补偿,并提出一种新型非奇异快速终端滑模函数,同时结合超扭曲算法,设计超扭曲非奇异滑模控制器,实现多台永磁同步电机协同控制。基于MATLAB/Simulink平台搭建系统的仿真模型,并基于自主研发的纯电动公铁两用车进行实车试验。试验结果表明,该超扭曲非奇异快速终端滑模控制器可有效减小转向系统控制过程中所产生的跟踪误差、同步误差及系统抖振,缩短系统的响应时间,提高系统的控制精度,达到较为理想的控制效果。  相似文献   

13.
针对传统轨迹跟踪控制方法应用场景局限,精度不高的问题,为实现车辆横纵向联合控制从而提升无人驾驶汽车在结构化场景下的轨迹跟踪效果,本文建立了自然坐标系下的车辆跟踪误差模型,设计基于LQR与PID相结合的车辆横纵向耦合控制器。在横向控制层面,为消除系统稳定误差,通过引入前馈控制量实现系统的整体稳定,减小车辆在实际运行过程中产生的横向误差,提升控制过程的稳定性;在纵向控制层面,运用PID控制策略进行调节,实现车辆的实际速度与规划速度,实际位置与规划位置之间的精确匹配。通过MATLAB/Simulink与Carsim搭建联合仿真平台,针对日常泊车、驶入主路以及超车多种工况进行仿真验证。仿真结果表明:本文所设计的横纵向联合控制器将车辆的轨迹跟踪误差控制在可接受范围之内的同时,轨迹跟踪效果满足乘客对车辆乘坐舒适性的要求,故本文设计的控制器具备一定的稳定性和准确性。  相似文献   

14.
现代无轨列车是一种新型公路运输车辆,其融合了汽运车辆建设成本低和轨道车辆载运量大的技术优势.针对多铰接现代无轨列车车体编组多,运动自由度大,曲线路径行驶时后方车辆会偏离前方车辆的运动轨迹的问题,建立了跟随误差模型,分析影响路径跟随性的因素,提出一种曲线路径行驶的路径跟随策略.采用航向角预测跟随控制策略,设计中间车轴的铰接角和后车轴的转向角控制规律,以增量PID算法补偿阿克曼转向模型误差,提高系统稳定性.最后在圆曲线路径和"S"曲线路径工况下测试车辆各轴的行驶轨迹.仿真结果表明:车辆的位置跟踪误差保持在0.03 m以内,航向跟踪误差最大在4.5°以内,车辆具有较好的路径跟随性能.  相似文献   

15.
为了解决四轮自动驾驶汽车轨迹跟踪的复杂控制问题,提出一种新的全格式无模型自适应坐标补偿积分滑模约束控制方案。控制方案只需要自动驾驶车辆轨迹跟踪的I/O数据,不涉及车辆模型信息,即前轮转角输入数据和车辆横摆角输出数据。因此,该方案对于不同车型均能实现轨迹跟踪控制。在轨迹跟踪过程中只针对车辆横摆角进行控制易造成跟踪轨迹偏差,本文在全格式无模型自适应控制的基础上加入坐标补偿算法;为了提高系统在运行过程中的鲁棒性,加入积分滑模控制;为了应对在滑模控制过程中系统运行在饱和区域,设计了动态补偿,使轨迹跟踪系统运行在滑模控制的线性区域。最后,对无模型自适应积分滑模约束控制方案、原型无模型自适应控制算法和PID算法进行仿真比较。仿真结果表明,所提算法比传统控制方法具有更好的控制性能,跟踪波动误差在0.09%以内,稳定时间在0.5 s以内,跟踪曲线平滑。  相似文献   

16.
针对传统的转鼓平台无法测量智能汽车轮胎转角,且不能用于智能汽车变道场景测试等问题,提出以伺服电机系统为控制对象的转向随动系统,研究基于距离传感器的控制策略对于转角跟随的影响。首先,将被测智能汽车置于转向随动系统的转向台上,轮胎转向带动转向台转动,实现被测智能汽车的转向角采集;其次,在左右转向台上分别安装一对激光传感器,采集转角差作为控制系统的误差输入;然后,将输入的转角差、转角差变化率与单片机控制位置脉冲的比例积分控制参数(PI)建立两输入、两输出的模糊控制关系,以提高转向随动系统定位的准确性和稳定性;最后,根据传感器采集的数据和仿真试验数据调整参数,实现模糊控制器的优化控制。试验时,被测智能汽车的车载电脑控制方向盘以不同角速度转动,车辆控制器局域网络(CAN)总线与测试台上位机程序分别记录方向盘转角和转向随动系统转角。研究结果表明:当被测智能汽车方向盘以不同角速度进行测试时,台架的测试结果能够保持在固定区间且没有明显变化,能为智能汽车的转向性能测试提供可靠参数支持;转向随动系统的延时与被测智能汽车方向盘转角速度没有显著关系,转向随动系统的延时约为235.5 ms。  相似文献   

17.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

18.
为了避免车辆发生横向失稳的风险,根据四轮独立驱动电动汽车四轮驱动/制动力矩独立可控的特点,提出了一种具有上层控制器和下层控制器两层结构的模糊滑模直接横摆力矩控制策略。上层控制器采用模糊滑模控制器计算车辆总的需求横摆力矩,并对4个车轮纵向力进行分配。下层控制器将轮胎纵向力转化为对轮胎滑动率的控制,并通过控制4个车轮的力矩使轮胎纵向力得到实现。仿真结果表明,该模糊滑模直接横摆力矩控制策略在不同的附着路面条件下都能保证车辆的横向稳定性,并能削弱传统滑模控制器造成的系统抖振。  相似文献   

19.
为了客观地评价公路线形设计成果,基于驾驶人轨迹预瞄理论,结合汽车的实时状态拟合预瞄轨迹,考虑汽车转向传递特征和操作的滞后性,建立了驾驶人方向控制模型,并在VB 6.0环境下编制了程序,进行了车辆运行的仿真试验。结果表明:所建模型可计算汽车行驶时的横向加速度和方向盘转角,能较好地反映公路的行车舒适性和安全性,并可用于公路线形的评价;汽车初始速度为0和54 km/h的运行结果仅在起始路段有显著差别;在汽车运行稳定后,横向加速度和方向盘转角的变化与平面线形的变化基本一致。  相似文献   

20.
分布式电驱动汽车驱动力矩优化控制分配   总被引:2,自引:2,他引:0  
针对分布式电驱动汽车在加速转向行车工况下车轮驱动力矩的控制分配问题,提出一种具有分层结构的控制策略.在控制策略的上层,为提高控制器对参数不确定和模型误差的鲁棒性,基于滑模控制进行主动横摆力矩计算.在控制策略的下层,构建了以提高车辆操纵性、降低电能损失为目标的优化问题,并基于离线计算和在线优化相结合的方式进行求解.采用Matlab-Carsim联合仿真,验证了控制策略在提高车辆操纵性能、降低能耗上的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号