首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用静电纺丝和胺肟化改性制备胺肟聚丙烯腈(AOPAN)纳米纤维,采用原子转移自由基聚合(ATRP)的方法在AOPAN纳米纤维上接枝丙烯酸单体得到AOPAN-AA纳米纤维.通过傅里叶红外光谱(FTIR)分析AOPAN-AA纳米纤维表面化学结构.采用电感耦合等离子体发射光谱仪(ICP-AES)测试溶液中金属离子的浓度,以此研究AOPAN-AA纳米纤维的金属离子吸附性能.结果表明:AOPAN-AA纳米纤维对Fe~(3+)、Cu~(2+)、Cd~(2+)、Cr~(3+)的饱和吸附量分别为5.36、2.81、1.36和1.18mmol/g,证明其金属离子吸附性能显著,并且吸附过程基本符合Langmuir吸附模型.  相似文献   

2.
采用生物活性玻璃(BG)、磷酸三钙(TCP)、羟基磷灰石(HA)等生物活性陶瓷与3-羟基丁酸酯-3-羟基戊酸酯的共聚物(PHBV)复合,制备了性能良好的骨组织工程支架材料,分析了PHBV/BG,PHBV/TCP,PHBV/HA三种复合多孔支架在模拟生理溶液中的一系列化学反应,以及多孔材料在模拟生理溶液中浸泡后的成分、结构和微观形貌的变化.研究结果表明,三种复合支架材料在模拟生理溶液中发生了降解反应而失重;PHBV/BG和PHBV/TCP在模拟生理溶液中还发生了生物矿化反应,在表面形成矿化沉积层,为具有骨生物活性的结晶态类骨碳酸羟基磷灰石;而PHBV/HA在模拟生理溶液中没有明显的生物活性反应.  相似文献   

3.
用丙烯酸酯法对二胺扩链剂己二胺进行了改性,合成了位阻型酯胺扩链剂N,N-2-甲基-丙酸甲酯-1,6-己二胺以解决聚脲反应高活性方面存在的问题.用红外光谱、高分辨质谱、氮含量测定等方法确定了合成产物的化学结构.将改性前后扩链剂与端氨基聚醚和4,4’-二苯甲烷二异氰酸酯通过二步溶液法合成聚脲进行了比较.丙烯酸酯法合成的酯胺扩链剂,在结构上2个-CH2CH(CH3)OCOCH3取代了原结构上的两个活泼H原子,本身活性降低,并产生较大空间位阻效应,使得凝胶时间延长,即反应活性降低,且合成的聚脲具备承受一定载荷和拉伸的能力.  相似文献   

4.
静电纺丝技术是一种简单有效、廉价、无污染的制备纳米纤维的新方法,近年来在制备纳米纤维领域得到了广泛应用.通过静电纺丝法制备的纳米纤维具有长径比大、孔隙率高、比表面积大等优点,在过滤材料、生物医学、传感器、电子器件等领域都有着良好的应用前景.本文综述了静电纺丝制备纳米纤维的基本原理和最新发展,阐述了近几年来国内外静电纺丝纤维在过滤材料、生物医学、传感器、电子器件及其他一些特殊领域中的研究现状,并展望了静电纺丝纳米纤维的发展趋势和研究方向.  相似文献   

5.
聚乙烯醇静电纺丝法固定葡萄糖氧化酶   总被引:7,自引:0,他引:7  
利用静电纺丝纳米纤维具有高比表面积和多孔疏松结构的优势固定葡萄糖氧化酶,以提高酶电极的性能.通过聚乙烯醇(PVA)和葡萄糖氧化酶(GOD)共同静电纺丝的方法在金电极表面获得了固定化酶膜,用于构筑安培型葡萄糖生物传感器,膜的红外光谱、紫外-可见光谱和扫描电镜的分析均表明酶成功固定在静电纺丝形成的纳米纤维膜中.循环伏安测试表明固定化酶在静电纺丝纳米纤维中保持了活性,采用PVA静电纺丝法固定COD比利用浇铸膜法所得到的酶修饰电极对葡萄糖有更好的电流响应特性,通过在静电纺丝溶液中加入纳米金进一步提高了酶电极的电化学响应特性.  相似文献   

6.
通过熔融共混的方法制备出了β-羟基丁酸酯和β-羟基戊酸酯共聚物(PHBV)/纳米CaCO3共混物,采用DSC,TGA,DMA,拉力机和旋转流变仪等仪器对所制备的共混物的热性能和力学性能进行了研究.结果表明,气氛对PHBV的热稳定性没有影响,纳米CaCO3的加入对PHBV的玻璃化转变温度和热分解温度基本不产生影响.此外,当加入的纳米CaCO3质量分数为5%时,共混物的增韧效果比较好.  相似文献   

7.
采用静电纺丝技术制备了TiO_2-SiO_2复合纳米纤维.以聚乙烯吡咯烷酮(PVP)、钛酸四丁酯和硅酸乙酯为主要原料,采用静电纺丝技术制备PVP/TBT/TEOS前驱复合纳米纤维,然后将前驱复合纳米纤维膜在马弗炉中煅烧至520℃得到TiO_2-SiO_2复合纳米膜.采用扫描电子显微镜和热重分析对材料形貌和结构进行了表征,得到直径范围分布窄、表面光滑、形貌良好的纳米纤维.结果表明:制备TiO_2-SiO_2复合纳米材料的最佳工艺条件为w(PVP)=8%,m(CH3COOH)=3.1g,w(TBT)=20%,w(TEOS)=16%;纺丝条件电压为11.00kV,接收距离为13~14cm,环境温度为27.4℃~30℃,环境湿度为39%~42%.  相似文献   

8.
可降解聚合物抗菌纤维膜的原位制备及性能表征   总被引:1,自引:1,他引:0  
以二氯甲烷、N,N-二甲基甲酰胺为溶剂,以聚乳酸(PLA)为纺丝纤维基体,添加纳米氧化锌(Zn O)和表面活性剂吐温60,利用高压静电纺丝法,原位制备纳米Zn O/PLA复合纤维膜。所得纤维膜中,Zn O分散均匀,纤维平均直径约300 nm,且表面光滑。纺丝纤维的亲水性随着纳米Zn O的增加而大幅提高,断裂强度和延伸率随纳米Zn O含量的增加呈现先上升后下降的趋势。抗菌能力也呈现一定的Zn O含量依赖性。细胞毒性和细胞黏附实验表明,该抗菌纤维膜具有较好的细胞相容性。  相似文献   

9.
研究了赖氨酸1,4-丁二醇酯(Lys-4)对聚苯胺(PANI)氨气敏感膜的影响.通过静电纺丝技术得到含有Lys-4的混纺聚丙烯腈(PAN)纳米纤维膜,之后在静电纺纤维膜表面聚合苯胺得到具有核壳结构的纳米纤维复合膜.研究表明,Lys-4的加入提高了PANI敏感膜对氨气的灵敏度及对氨气的选择性,对于浓度为100μL/L的氨气,敏感膜的响应值从1.55增加到2.38,氨气最低检测浓度也进一步降低,为更加准确地检测氨气提供了新方法.  相似文献   

10.
静电纺丝法制备组织工程纳/微米纤维支架   总被引:18,自引:0,他引:18  
静电纺丝是一种简便易行的新型组织工程多孔支架制备方法,电纺支架具有独特的微观结构和适当的力学性能.由于具有与天然细胞外基质相近的纳米级结构,电纺支架能够仿生细胞外基质的结构特点,使之有望成为理想的组织工程支架.文中介绍了静电纺丝和同轴静电纺丝的基本原理和发展过程、电纺支架的加工方法和结构特点以及电纺纤维的定向收集技术,阐述了各种天然和合成聚合物纳/微米电纺支架在软骨、骨、血管、心脏、神经等组织工程领域的应用,并展望其应用前景.  相似文献   

11.
The electrospun nanofibrous scaffolds made of proteins and polysaccharides were thought to be able to simulate the structure of natural extracellular matrix well.Silk fibroin(SF)and chitosan(CS)are probably the most widely used natural materials in biomedical fields including liver tissue engineering for their good properties and wide variety of sources.The asialoglycoprotein receptors of hepatocyte were reported to specifically recognize and interact with galactose.In this work,a green electrospun SF/galactosylated chitosan(GC)composite nanofibrous scaffold was fabricated and characterized.The data indicated that the addition of GC greatly influenced the spinning effect of SF aqueous solution,and the average diameter of the composite nanofibers was about 520nm.Moreover,the green electrospun SF/GC nanofibrous scaffolds were demonstrated significantly enhancing the adhesion and proliferation of hepatocyte(RH35)according to our data.The present study did a useful exploration on constructing scaffolds for liver regeneration by green electrospinning,and also laid a good foundation for the further applicative research of this green electrospun scaffolds in liver tissue engineering.  相似文献   

12.
The aim of this study is to prepare poly-L-lactide( PLLA) electrospun nanofibrous scaffolds coated with hippocampal neuron-derived extracellular matrix( N-ECM)and construct a novel neural tissue engineering scaffold.Neonatal rat hippocampal neurons were seeded on PLLA nanofibers,and then decellularized to derive a cell-free extracellular matrix loaded N-ECM/PLLA modified scaffolds. The morphology and ingredients of N-ECM/PLLA were observed by scanning electron microscopy( SEM) and immunofluorescence staining respectively, and the cytocompatibility of the composite scaffolds was characterized by cell count kit-8( CCK-8) assay. The N-ECM was clearly identified loading on scaffolds when being imaged via SEM and immunofluorescence staining results showed that the N-ECM was made up of fibronectin and laminin. Most importantly, compared with tissue culture polystyrene and pure scaffolds, N-ECM/PLLA scaffolds could effectively facilitate the proliferation of rat adrenal neuroma cells( PC12 cells),indicating their better cell compatibilities. Based on the combination of N-ECM and PLLA biomaterials,the present study has fabricated a unique and versatile neural tissue engineering scaffold,offering a new thought for future neural tissue engineering.  相似文献   

13.
The combination of micro-carriers and polymer scaffolds as promising bone grafts have attracted considerable interest in recent decades.The poly(L-lactic acid)/poly(lactic-co-glycolic acid)/polycaprolactone(PLLA/PLGA/PCL)composite scaffold with porous structure was fabricated by thermally induced phase separation(TIPS).Dexamethasone(DEX)was incorporated into PLGA microspheres and then loaded on the PLLA/PLGA/PCL scaffoldtopreparethedesiredcompositescaffold.The physicochemical properties of the prepared composite scaffold were characterized.The morphology of rat bone marrow mesenchymal stem cells(BMSCs)grown on scaffolds was observed using scanning electron microscope(SEM)and fluorescence microscope.The resultsshowedthatthePLLA/PLGA/PCLscaffoldhad interconnected macropores and biomimetic nanofibrous structure.In addition,DEX can be released from scaffold in a sustained manner.More importantly,DEX loaded composite scaffold can effectively support the proliferation of BMSCs as indicated by fluorescence observation and cell proliferation assay.The results suggested that the prepared PLLA/PLGA/PCL composite scaffold incorporating drug-loaded PLGA microspheres could hold great potential for bone tissue engineering applications.  相似文献   

14.
Poly(e-caprolactone)(PCL)is widely adopted as an ingredient for tissue engineering scaffolds.To improve its cell affinity,in this study,we developed a new method to introduce bioactive RGD peptides onto the surface of PCL via condensation reaction between 2-cyanobenzothiazole(CBT)and D-cysteine.The PCL fibrous membranes were prepared by electrospinning,and RGD functionalization was characterized by fluorescence microscopy,scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS)and water contact angle(WCA).As expected,our results demonstrated the successful RGD immobilization on the surface of PCL.RGD modification improved the hydrophilicity of PCL,changing their WCA from 112.20°to38.35°.Cell adhesion,spreading and proliferation of 3T3fibroblasts were also enhanced.We therefore believe that the methods reported in this study was facile and effective for functional modification of the hydrophobic PCL scaffolds.The moderate reaction conditions are also suitable for covalent immobilization of bioactive molecules onto PCL.  相似文献   

15.
Disc-electrospinning using a disc as spinneret and a rotary drum as collector is a novel technology to prepare nanofiber which has been applied in tissue engineering scaffolds. In this study, nanofibrous mats with mlcro-patterned structure were fabricated via disc-electrospinning. Poly (ε-eaprolactone) (PCL) was dissolved in trifluoroethanol (TFE) at various concentrations ( 2 %-7 % ) (w/v) for electrospinning and the applied voltage ranged from 40 to 70 kV. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibrous scaffolds. SEM images illustrated that the nanofibers with beads formed micro-patterned structure such as triangles and other polygons. The average diameter of nanofibers presented various size with the concentration increased from 2% to 7%. The beads on the nanofibers constructed the vertexes of the polygons, while nanofibers bridged between adjacent vertexes. The concentration of solution and applied voltage may be two dominant factors to influence the topological structure of the nanofibrons scaffolds. Cells cultured on the micro-patterned scaffold spread along the edges of the polygons. The scaffold with patterned structure may have a promising application in tissue engineering.  相似文献   

16.
A stable gelatin gradient providing continuous increment of signaling for cell adhesion and proliferation was fabricated within 3D poly(L-lactic acid) (PLLA) scaffolds. The porous PLLA scaffold fabricated by NaCI particle leaching was vertically fixed on a glass vial. 1,6-Hexanediamine/propanol solution was continuously injected into the vial by a micropump to aminolyze the PLLA scaffold. As a result of reaction time difference, the introduced -NH2 groups increased continuously along with the longitude of the PLLA scaffold in the z-direction. After covalent immobilization of gelatin by glutaraldehyde coupling, the gelatin gradient scaffold was thus obtained. In vitro chondrocyte culture showed that the cells had higher viability and more extending morphology in the gelatin gradient scaffold than that in the uniform gelatin control.  相似文献   

17.
Colloidal gels made of oppositely charged nanoparticles are a novel class of hydrogels and can exhibit pseudoplastic behavior which will enable them to mold easily into specific shapes. These moldable gels can be used as building blocks to self-assemble into integral scaffolds from bottom to up through electrostatic forces. However, they are too weak to maintain scaffold morphology just depending on interparticle interactions such as Van der Waals attraction and electrostatic forces especially for bone tissue engineering. In this study, oppositely charged gelatin nanoparticles were firstly prepared by two-step desolvation method, followed by the mixture with water to form colloid gels. To solve the problem of weak mechanical performance of colloid gels, gelatin macromolecules were introduced into the prepared gels to form blend gels. The blend gels can be easily processed into three-dimensional (3D) porous scaffolds via motor assisted microsyringe (MAM) system, a nozzle-based rapid prototyping technology, under mild conditions. After fabrication the scaffolds were erosslinked by glutaraldehyde ( GA, 25 % solution in water by weight), then the crosslinked gelatin macromolecules network could form to improve the mechanical properties of colloid gels. The average particle size and zeta potential of gdatin nanoparticles were measured by Nano- ZS instrument. The morphology and microstructures of scaffolds were characterized by macroscopic images. The mechanical properties of the scaffolds were studied by a universal material testing machine.  相似文献   

18.
Bone tissue engineering, aiming at developing bone substitutes for repair and regeneration of bone defects instead of using autologous bone grafts, has attracted wide attention in the field of tissue engineering and regenerative medicine. Developing biomimetic biomaterial scaffolds able to regulate osteogenic differentiation of stem cells could be a promising strategy to improve the therapeutic efficacy. In this study, clectrospun composite nanofibers of hydroxyapatite/collagen/chitosan ( HAp/Col/CTS ) resembling the fibrous nanostructure and constituents of the hierarchically organized natural bone, were prepared to investigate their capacity for promoting bone mesenchymal stem cells (BMSCs) to differentiate into the osteogenic lineage in the absence and presence of the osteogenlc supplementation, respectively. Call morphology, proliferation and quantified specific osteogenic protein expression on the electrospun HAp/Coi/CTS scaffolds were evaluated in comparison with different controls including dectrospun nanofibrous CTS, HAp/CTS and tissue culture plate. Our remits showed that the nanofibrous HAp/Col/CTS scaffolds supported better spreading and proliferation of the BMSCs than other substrates ( P 〈 0.01 ). Expressions of osteogenesis protein markers, alkaline phosphatase (ALP) and Col, were significantly upregulated on the HAp/Col/CTS than those on the CTS (P 〈0.01) and HAp/ CTS (P 〈 0. 05 ) scaffolds in the absence of the osteogeulc supplementation. Moreover, presence of osteogeulc supplementation also proved to enhance osteogeule differentiation of BMSCs on HAp/ Col/CTS scaffolds, indicative of a synergistic effect. This study highlights the potential of BMSCs/HAp/Col/CTS cell-scaffold system for functional bone repair and regeneration applications.  相似文献   

19.
Controlled release of the functional factors is the key to improve clinical therapeutic efficacy during the tissue repair and regeneration.The three-dimensional(3D)scaffold can provide not only physical properties such as high strength and porosity but also an optimal environment to enhance tissue regeneration.Sphingosine1-phosphate(S1P),an angiogenic factor,was loaded into mesoporous silica nanoparticles(MSNs)and then incorporated into poly(L-lactic acid)(PLLA)nanofibrous scaffold,which was fabricated by thermally induced phase separation(TIPS)method.The prepared scaffolds were examined by attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR),scanning electron microscopy(SEM),and transmission electron microscopy(TEM)and compressive mechanical test.The ATR-FTIR result demonstrated the existence of MSNs in the PLLA nanofibrous scaffold.The SEM images showed that PLLA scaffold had regular pore channel,interconnected pores and nanofibrous structure.The addition of MSNs at appropriate content had no visible effect on the structure of scaffold.The compressive modulus of scaffold containing MSNs was higher than that of the scaffold without MSNs.Furthermore,fluorescein isothiocyanate(FITC)was used as model molecule to investigate the release behavior of S1P from MSNsincorporated PLLA(MSNs/PLLA)nanofibrous scaffold.The result showed that the composite scaffold largely reduced the initial burst release and exhibited prolonged release of FITC than MSNs.Thus,these results indicated that S1P-loaded composite nanofibrous scaffold has potential applications for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号