首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我们知道,如果{a_n}为等差数列(以下简记为A·P),那么它的通项和前n项和分别是: a_n=a_1 (n-1)d ① S_n=na_1 n(n-1)d/2 ② 整理,得 a_n=d_n (a_1-d) ③ S_n=d/2n~2 (a_1-d/2)n ④ ③、④二式表明:当d≠0时,A·P的a_n是n的一次式,S_n是n的二次式;当d=0时,A·P的a_n是常数,S_n是n的一次式。 现在的问题是:如果一个数列的通项a_n=kn b(k,b为常数),那么这个数列是否是A·P?如果前n项和S_n=pn~2 q~n r,这个数列是否是A·P?下面的两个定理分别解决了这个问题。 定理1 数列{a_n}为A·P的充要条件是:a_n=kn b(其中k,b是常数)。  相似文献   

2.
关于二阶线性递归序列的一些恒等式   总被引:1,自引:0,他引:1  
设ωn+2=Aωn+2-Bωn(B≠0) (n=0,±1,±2,…),我们完全确定了何时有恒等式ωpn+r=nΣk=0(nR)i n-kskωqk+r (n∈N={0,1,2…}).设u0=0,u1=1,且u+2=Aun+1-Bun(n=0,±1,±2,…),对l,m∈N及函数fN→{k∈Zωk≠0},我们证明了关于l,m对称的恒等式1-1Σk=0Bf(k)uf(k+m)-f(k)ωf(k)ωf(k+m)=m-1Σk=0Bf(k)uf(k+l)-f(k)ωf(k)ωf(k+l)它可用于计算无穷级数+∞Σk=0Bf(k)uf(k+m)-f(k)/(ωf(k)ωf(k+m).本文的结果推广了南献[1]、[2]、[3]、[7]、[8]中相关的工作.  相似文献   

3.
设f(x)是以2π为周期的周期连续函数; f(x)~a_0/2+sum from n=1 to ∞(a_n cosnx+b_n sinnx)。(1)设S_n(x)是这个富里埃级数的部分和,E_n(f)是f(x)的阶不高于n的最佳逼近。在一般情形,  相似文献   

4.
设S_n(x)(n=1,2,……)表示f(x)∈L(0,2π)的富理埃级数的部分和。 R·Mohanty和S·Mohapatra证明了:如果(f(x+t)+f(x-t)-2S)/t∈L(0,π),则级数∑((S_n(x)-S)/n)是|c,δ|可和,其中δ>0。在本文中,我们推广这个结果成下面的定理:令{p_n}是使得p_n≥0,P_n=p_0+…+p_n→∞且∑|△V_n|<∞,其中V_n=(n+1)p_n/P_n,的数列,同时满足 sum from k=n to ∞ 1/((k+2)P_n)=O(1/P_n), 则,当[f(x+t)+f(x-t)-2S]/∈L(t,π)时,级数∑(S_n(x)-S/n)在x点是|N,p_n|可和。  相似文献   

5.
Baskakov算子对有界变差函数的点态逼近   总被引:1,自引:0,他引:1  
设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e~(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x~k/(1+x)~(n+k)) Fuhua Cheng借助Bojanic的方法得出了S_n(f,x)对f(x)的点态逼近度。本文在学习与参考[2]的基础上,更多地应用概率方法,来研究V_n(f,x)对f(x)的点态逼近度。在处理尾部时,我们得到了一个一般性的结果(文中的引理5),它不仅可以用来证明本文的定理1,而且也适用于其他算子,从而简化了[2]中的计算。  相似文献   

6.
对于БЕРНшТЕИН[1]提出的逼近连续周期函数的求和算子Un(f;x)=1/(2n+1) sum from k=0 to 2n f(x_k)〔sin2/2(x-x_k)/sin(x-x_k)/2 〕~2,HATAHCOH[2]证明了它的收敛性.至于误差估计,本文得到:1)若f∈C2π,则|Un(f;x)-f(x)|≤(5+3/2π)ω(f,lnn/n)(n≥3),2)若f∈C2π且f∈Lipiα(0<π<1),则|Un(f;x)-f(x)|≤〔7/4+3/(1-α)〕(2π/2n+1)~α,3)若f∈C2π且f∈Lipil,|Un(f;x)-f(x)|≤15·ln(2n+1)/2n+1。  相似文献   

7.
设三角级数α_0/2+sum from n=1 to ∞(a_ncos nx+b_nsin nx)的余弦系数a_n有相同符号,(全部a_n≥0,或全部a_n≤0)正弦系数b_n亦有相同符号,简称这种级数为同号系数级数。在[1]中我们证明了:设f~((k))(x)存在而且是连续的。当f(x)的富里埃级数是同号级数时,  相似文献   

8.
通项公式a_n=f(n)在特殊数列求和中有着很重要作用,利用它求某些特殊数列之和,往往事半功倍。 如:S_n=1+(1+2)+(1+2+3)+…+(1+2+3+…+n) a_n=1+2+3+…+n=(n(n+1))/2=n~2/2+n/2 相加得: S_n=1/2(1~2+2~2+3~2…+n~2)+1/2(1+2+3+…+n), 当然S′_n=1~2+2~2+…+n~2=1/6n(n+1)(2n+1) S_n=1/2·1/6n(n+1)(2n+1)+1/2·n(n+1)/2=1/12n(n+1)(2n+1+3)=1/12n(n+1)(2n+4)=1/6n(n+1)(n+2) 再如:S_n=1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+n)  相似文献   

9.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

10.
等差数列,等比数列在中学数学中占有重要地位,很多较为复杂的数列在求其通项的过程中,往往化归为等差、等比数列才得以解决,而级数又是高等数学的重要组成部分.因此对等差、等比数列的学习及对其本质的探讨是十分重要的.等差数列通项公式为a_n=a_1 (n-1)d,前n项和公式是S_n=(a_1 a_n)/2n=na_1 n(n-1)/2d,数列本身又是一类整标函数,由此可以联想到其通项a_n是n的一次函数,S_n  相似文献   

11.
设W=f(Z)是Z<1到W<1的K-拟保角映射,f(0)=0.我们得到 f(Z_1)-f(Z_2)<16~(1-2K)Z_1-Z_2 1 k,(Z_1≠Z_2)。从而改进了著名的森明(A.Mori)偏差定理。  相似文献   

12.
设x_n的密度函数为f(x),X∈R~d,f_n(x)=(nh~d)~(-1)sum from i-1 to n k((x-x_i)/h)为f的核估计,其中0相似文献   

13.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

14.
§1、设函数ω(t)(0≤t≤π)是连续模,用H[ω]_L表示满足条件 ‖f(x+t)-f(x)‖_L=integral from n=-π to π(|f(x+t)-f(x)|dx≤ω(t))的有周期2π的周期可积函数f(x)所成的函数类。又用S_n(x、f)表示f(x)的富里埃级数的开头几项和,σ_(n,p)(x,f)表示瓦雷—布然平均:  相似文献   

15.
一问题的提出、定义在微积分学中我们学过导数的定义:f(x)在x的导数定义为 f′(x)=lim k→0 f(x h)-f(x)/h如记△f(x)=f(x h)-f(x)为f(x)在x的一阶向前差分,则有 f′(x)=lim h→0 △f(x)/h (1.1) 我们还学过微分学的中值定理,即Lagrange公式 f(x h)-f(x)/h=f′(c)(x相似文献   

16.
本文应用数列{an}通项公式a_n=a_1 sum from k=1 to (n-1)(a_(k 1)-a_k)的改进型,解决了几类由递推 公式给出的数列的通项公式。  相似文献   

17.
设f(x)∈L~P(Ω_n),1≤P≤2,δ>(n-1)(1/p-1/2),而σ_N~8(f)(x)表示f(x)在n维球面Ω_n上的Ces(?)ro平均.本文证明了(?)1/(N+1)sum from k=0 to N|σ_k~8(f)(x)-f(x)|~2a_k=0 a、e、x∈Ω_n其中权系数a_k>0满足1≤1/N+1(sum from k=0 to N)a_k≤A(A是一个绝对常数)  相似文献   

18.
“级数求和”也可以叫“数列求和”。如果级数sum from k=1 to ∞(a_k=a_1 a_2 … a_n ……)的部分和序列S_n=a_1 a_2 … a_n 有极限lim S_n 存在,就把这个极限叫做级数sum from k=1 to ∞(a_k) 的和。在中学数学里,曾提到许多数列的求和问题,例如无穷递缩等比数列的求和公式为:  相似文献   

19.
本文构造了两个切触有理插值逼近算子Hn(f;x)和Gn(f;x)。它们分别基于Hermite-Fejer插值多项式Hn(f;x)和Grunwald插值多项式Gn(f;x)。主要证明了当f∈c[-1,1]时,有|Hn(f;x)-f(x)|=0(1)Wr(1/n)(n≥2) |Gn(f;x)-f(x)|=0(1)Wr(1/n)(n≥2)其中Wr(δ)是f(x)的连续模。显然它们的逼近阶优于Hn(f;x)和Gn(f;x)的逼近阶[1]。  相似文献   

20.
设 X_1,X_2,…,X_n,i.i.d.是具有概率密度函数 f(x)的随机变量,定义(x)=(na_n(x))~(-1)K((X_i-x)/α_n(x)),n≥1。本文中,我们在某些紧集 B 上讨论了了(x)一致强收敛于 f(x)的速度.若{c_n}是任意一个趋于无穷的数列,我们得到:c_n~(-1)(n/logn)~(m/(2m 1))|~n(x)-f(x)|→0,α.e.n→∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号