首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设f(x)是以2π为周期的周期连续函数; f(x)~a_0/2+sum from n=1 to ∞(a_n cosnx+b_n sinnx)。(1)设S_n(x)是这个富里埃级数的部分和,E_n(f)是f(x)的阶不高于n的最佳逼近。在一般情形,  相似文献   

2.
王娟 《科技资讯》2012,(8):196+198-196,198
实值级数sum from n=1 to ∞的和,定义为lim n→∞ S_n=lim n→∞ (sum from k=1 to n(a_)),对于收敛级数的求和方法,常用的有裂项相消法,利用幂级数在收敛区间内的逐项可积,逐项可导等方法来简化计算。本文给出了数学归纳法、Abel定理、幂级数展开式、复数级数展开式等方法来解决收敛级数的求和问题。  相似文献   

3.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

4.
本文应用数列{an}通项公式a_n=a_1 sum from k=1 to (n-1)(a_(k 1)-a_k)的改进型,解决了几类由递推 公式给出的数列的通项公式。  相似文献   

5.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

6.
我们知道,如果{a_n}为等差数列(以下简记为A·P),那么它的通项和前n项和分别是: a_n=a_1 (n-1)d ① S_n=na_1 n(n-1)d/2 ② 整理,得 a_n=d_n (a_1-d) ③ S_n=d/2n~2 (a_1-d/2)n ④ ③、④二式表明:当d≠0时,A·P的a_n是n的一次式,S_n是n的二次式;当d=0时,A·P的a_n是常数,S_n是n的一次式。 现在的问题是:如果一个数列的通项a_n=kn b(k,b为常数),那么这个数列是否是A·P?如果前n项和S_n=pn~2 q~n r,这个数列是否是A·P?下面的两个定理分别解决了这个问题。 定理1 数列{a_n}为A·P的充要条件是:a_n=kn b(其中k,b是常数)。  相似文献   

7.
§1.設f(t)是以2π为週期,依Lebesgue的意義是可積的週期函數,其富理埃极数为 a_0/2+sum from n=1 to ∞(a_n cos nt+b_n sin nt),(1) 它的共軛級數为 sum from n=1 to ∞(b_n cos nt-a_n sin nt)。(2)  相似文献   

8.
设三角级数α_0/2+sum from n=1 to ∞(a_ncos nx+b_nsin nx)的余弦系数a_n有相同符号,(全部a_n≥0,或全部a_n≤0)正弦系数b_n亦有相同符号,简称这种级数为同号系数级数。在[1]中我们证明了:设f~((k))(x)存在而且是连续的。当f(x)的富里埃级数是同号级数时,  相似文献   

9.
在文[1]中,介绍了判别正项级数敛散性的一种方法,其方法如下:设sum from n=1 to ∞ a_n为正项级数,如果(?)(a_(n 1~))/a_n)<(1/e),则级数收敛;如果(a_(n 1~(?)))/a_n>(1/e),则级数发散。本文要指出:此判别法与拉阿伯(Raabe)判别法是等价的,仅在于表现形式不同。为讨论问题方便,先列出拉阿伯判别法:设sum from n=1 to ∞ a_n为正项级数,如果(?)(a_(?)/a_(n 1~))>1,则级数收敛;如果(a_n/a_(n 1)-1<1,则级数发散。  相似文献   

10.
设 a_1,…a_n 是无限域 F 上的 k (k 为正整数,且 k≥2)维向量组,若存在全不为零的 C_i∈F,使得 sum from i=1 to n Ci_a_i=0,则 a_1,a_2…,a_n 是 t—线性相关的向量组。本文用向量组的秩对向量组的 t—线性相关问题作了刻划。  相似文献   

11.
关于自然数组成的级数sum from k=1 to ∞ (k)和自然数平方组成的级数sum from k=1 to ∞ (k~2)的前n项求和公式: S_1(n)=sum from k=1 to n (k)=n(n+1)/2 S_2(n)=sum from k=1 to n (k~2)=1/6n(n+1)(2n+1) (2)我们大家非常熟悉,并且在一些文献中分别给出不同的证明。本文利用公式(1),(2)介绍几种自然数立方组成的级数sum from k=1 to ∞ (k~3)的前n项和公式:  相似文献   

12.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

13.
若f(z)=z sum from n=2 to ∞(a_nZ~n)在单位圆|z|<1中正则单叶,本文证明:当|a_3|≤2.44时,|a_n|相似文献   

14.
本文主要结果为鞅差序列{X_i,J_i,i≥1}服从强大数律的充分条件为(1) sum from i=1 to ∞(E[|X_i|~p/a~p_i+|X_i|~p|J_(i-1)]<∞,0相似文献   

15.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

16.
设f_k(z)=z+sum from v=1 to ∞(a_(vk+1)~(k)z~(vk+1)∈S_k,那末g(z)=1/2(zf_k(z))′=z+((k+2)/2)a_(k+1)~(k)z~(k+1)+…+((nk+2)/2)a(nk+1)~(k)z~(nk+1)+…记S_n(z)=z+((k+2)/2)a_(k+1)~(k)z~(k+1)+…+((nk+2)/2)a(nk+1)~(k)z~(nk+1)则二项式S_1(z)和三项式S_2(z)在圆域|z|≤k(k/(((k+1)(k+2))~(1/2))内星形,且星形半径不能易以更大的数。  相似文献   

17.
<正>数列是高中代数的重点内容之一,也是高考考查的重点,从近几年的高考试题看。递推数列为考查热点,通常题目条件中给出a_n,a_(n-1),a_(n-2)及S_n的关系,然后要求解决一些有关数列通项、求和等问题。本文就几种递推数列的通项求法做一些讨论。1递推数列a_(n+1)=pa_n+q型(p,q为常数)通项的求法例1求满足a_1=3,a_(n+1)=1/2a_n+3(n∈N)的数列{a_n}的通项。  相似文献   

18.
等差数列,等比数列在中学数学中占有重要地位,很多较为复杂的数列在求其通项的过程中,往往化归为等差、等比数列才得以解决,而级数又是高等数学的重要组成部分.因此对等差、等比数列的学习及对其本质的探讨是十分重要的.等差数列通项公式为a_n=a_1 (n-1)d,前n项和公式是S_n=(a_1 a_n)/2n=na_1 n(n-1)/2d,数列本身又是一类整标函数,由此可以联想到其通项a_n是n的一次函数,S_n  相似文献   

19.
1、引言 Riemann ζ—函数ζ(2n)=sum from k=1 to ∞(1/k~(2n))的值,有古典的公式可以计算,但比较复杂。在学习文[1]中建立了sum from k=1 to ∞(1/k~2)=π~2/6的一个简单证明之后,使我联想得能否也建立sum from k=1 to ∞(1/k~4)=π~4/90,sum from k=1 to ∞(1/k~6)=π~6/945,sum from k=1 to ∞(1/k~8)=π~8/9450等的简单证明,并使[1]的方法更进一步推广,形成某种规律,较一般地解决这些问题,这就是此文的目的。  相似文献   

20.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号