首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1 预备知识 设K是Banach空间E的非空闭凸子集, 称T:K→K为渐进张映射,若存在一个满足条件limn→∞θn=0的正数序列{θn}使得‖Tnx-Tny‖(1+θn)‖x-y‖,x,y∈K.称θn≡0,则T为非扩张映射.  相似文献   

2.
在实赋范线性空间E(dimE ≥ 2 )中证明 :当E中向量x ,y线性无关 ,且‖x‖ ≥‖y‖ >0时 ,存在唯一的a ∈R使得x+‖y‖ (y +ax)‖y +ax‖ =x- ‖y‖ (y +ax)‖y +ax‖即在x与y生成的平面上xIsosceles正交且只正交于一个范数是‖y‖的向量 .  相似文献   

3.
§1.引言设R是綫性拓扑空间。在本文中我们始终以β表示由R的某些子集组成的、包含R中一切闭集的最小σ-代数。当B∈β,x∈R时,用B+x表示一切形如y+x,y∈E的向量全体所成的集,即B+x为B经过平移y→y+x,所得的集、那末显然有B+x∈β。设μ是(R,β)上的一个概率测度,B是R的一个子集,B∈β。若μ(B)=0则称B是μ-零  相似文献   

4.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

5.
设X是一个有限全序集,E是集合X上的等价关系.令PEOPx={α∈Px:(A)x,y∈domα,(x,y)∈E且x≤y(=>)(xα,yα)∈E且xα≤yα},取定θ∈PEOPx,在PEOPx上定义一个运算"o",其中α°β=αθβ,得到一个新的半群称为保E-序部分变换半群的变种半群,记为PEOPx(θ).本文主要刻划...  相似文献   

6.
考虑耦合阻尼系统{x″+p1(t)x'+q1(t)x=f1(t,y)+e1(t),y″+p2(t)y'+q2(t)y=f2(t,x)+e2(t).周解期的存在性问题.其中pi,qi,ei∈L1(R)是T-周期函数,fi∈Car(R×R+,R)(i=1,2)在原点具有奇异性.运用Schauder不动点定理和fi的奇异性,证明该系统存在周期解.  相似文献   

7.
本文所涉及的概念依文献.设△为可除环,在△里定义了一个对合的反自同构α→α,R是△上的左向量空间,令x α=αx,则R同时又是△上的一个右向量空间.对R里的向量对(x,y),定义一个函数g(x,y),其值∈△,且满足:  相似文献   

8.
§1.引言设H是一个Hilbert空间,A是作用在H上的对称的有界算子,又x∈H,命x_1=Ax/‖Ax‖,x_k=(Ax_k-1)/‖Ax_k-1‖,l_k=‖Ax_k-1‖(k=2,3,4,…),{l_k}便是一个有界的单调不减叙列,从而有极限,设为l.若l≠0,则可用(?)(x)表无穷乘积(l_1·l_2·l_3…)/(l·l·l…).如果对于所有使l≠0之x,均有(x)≠0,则算子A就称为正则的,而l就叫作算子A的、舆x相关的频数.上述定义是R.Wavre(1943)引进的.显然,正则性是较完全连续性为广的概念.Wavre在他的论文中证明正则算子的特微值不能多于可数多个,所有異于零的特微值的绝封值所组成的数集,最多也只能有左侧凝聚点(默x称为集合E的左  相似文献   

9.
设T_X是非空集合X上全变换半群,E是X上等价关系,则T_?(X)={f∈T_X:?_x,y∈X,(f(x),f(y))∈E?(x,y)∈E}是T_X的反射等价关系的子半群.取定θ∈T_?(X),在T_?(X)上定义新的运算°为f°g=fθg,其中fθg表示一般意义上映射f、θ、g的复合.关于这个运算°,T_?(X)成为夹心变换半群T_?(X;θ).本文刻画了它的正则元,给出了T_?(X;θ)是正则半群的充要条件.  相似文献   

10.
设R是有单位元的结合环.设x∈R,若存在y∈R和正整数n,使得x~n=yx~(n+2)(x~n=x~(n+1)y),则称x是左(右)π-正则元.如果x既是左π-正则元又是右π-正则元,则称x是强π-正则元.若环R中的每一个元素都是强π-正则元,则称R是强π-正则环.给出了R*_θG是强π-正则的充分或必要条件,其中θ是群G到由R的自同构所构成的群Aut(R)的群同态.  相似文献   

11.
借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz.  相似文献   

12.
设(θ,X),(θ_1,X,),…,(θ_n,X_n)是独立同分布的随机向量,θ∈{0,1},X∈x{0,1,2,…相似文献   

13.
下面先给出 BCK-代数中的几个定义   定义 1设〈 X;*, 0〉是一个 BCK-代数, X的一个非空子集 A被称为一个理想,如果它满足   (1)0∈ A  (2)x∈ A, y* x∈ A, y∈ A(以后表示可推出 )  定义 2设和〈 Y;* 1,θ〉是两个 BCK-代数,如果存在一个映射, f∶ X→ Y,使得对于任意的 x, y∈ X,有 f(x* y)=f(x)* 1f(y),则称 f为 X到 Y的一个同态映射,且称 X和 Y是同态的,记 X~ Y  定义 3设 f是两个 BCK-代数到的一个同态,称集合 Ker(f)={x∈ X;f(x)=θ }为同态 f的核。 在 [1]中已有如下结论 …  相似文献   

14.
1.引言设 y 是 k×1随机向量,满足(Ⅰ){Ey=θ,Covy=σV,V≥0(非负定阵)已知。称(Ⅰ)为一般线性模型。设 q′y 是参数的线性函数 p′θ的线性估计量。关于 q′y 的允许性问题,C.R.Rao 在1975年的纪念 Wald 讲座[1]中叙述了如下定理:在平均二次损失函数  相似文献   

15.
给定图G=(V,E),G的Mycielski图μ(G)被定义为一个新图:V(μ(G))=V∪V'∪{w},其中V'={y'|y∈V};E(μ(G))=E∪{xy'|xy∈E}∪{wy'|y'∈V'},称点y'为y的复制点.文章证明了连通图G的Mycielski图存在P4分解当且仅当G的阶数能被3整除.此外我们还给出了Mycielski图的P4分解的一个多项式算法.  相似文献   

16.
一个随机变量X的Fisher矩阵定义为F=Eθ[hhT],这里f(x|θ)为X的密度函数,θ∈Rd为参数向量,h=Δ θln f(x|θ)为得分向量.介绍Fisher矩阵的几类等价定义及基本性质,引入Fisher张量,讨论了参数最大似然估计的渐近分布.  相似文献   

17.
§1 r方正交投影算子的定义及性质。定义1:设X是赋范空间,M,N是X的子集,若对任意的x∈M,y∈N有‖x+y‖~r=‖x‖~r+‖y‖~r 则称M与N是r方正交的,记为M⊥~rN,(r≥1)定义2:设X是赋范空间,P是X到X的线性算子,满足P~2=P,则称P是X上的投影算子 这时易知:X=R(p)(?)N(p).  相似文献   

18.
F是闭集当且仅当L(x,θ↑→;F^c)=0 μ-a.e.(x,θ↑→)∈F;y是弱常返的,x可达y,则∑n=1^∞P^n(X,θ↑→;[E]y)=∞;当X是有限集时,M=C1=C≠Ф,部分地回答了Orey提出的开问题.  相似文献   

19.
设X,Y,Z皆为拓扑向量空间,C和D分别是Y和Z中的闭凸锥.Z中由D规定的偏序如下:对任意z_1,z_2∈Z,当且仅当z_2-z_1∈D时,z_1≤z_2考虑下述多目标规划问题min f(x);s.t.x∈R(?){x ∈X且g(x)∈C},其中,f:X→Z;g:X→Y.定义1 设(?)∈R,如果(f(?)-D)∩(f(R)\{f(?)}=?,则f(?)称为(1)式的有效点.当f(?)是(1)式的有效点时,称(?)是(1)式的有效解.任给(?)∈R,作映射F(?):X→Z×Y为F(?)(x)=(f(?)-f(x)),g(x)).记H=(D\{0})×C,K(?)={F(?)(x)|x∈X},E(?)=K(?)-c1H.定义2称  相似文献   

20.
设R是个半质环,C是R的中心,f_i(x,y)(i=1,2)是关于m个x,n个y的乘积。本文之定理用比较简单的方法证明了下列之命题(Ⅰ)蕴含命题(Ⅱ): (Ⅰ)若对任何x,y∈R,均有f_1(x,y)—f_2(x,y)∈C,则R为交换环。 (Ⅱ)若对任何x,y∈R,均有f_1(x,y) f_2(x,y)∈C,则R为交换环。从而,给出了文献[5]、[8]、[9]若干定理的简短的证明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号