首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对混合动力汽车制动过程中机械制动力与电再生制动力的分配问题,在制动稳定区间内,以尽可能多地回收制动能量为目标,提出了一种最大化制动能量回收的并联式混合动力汽车再生制动控制策略。建立整车与制动控制器模型,仿真结果表明:与传统固定制动力分配比例的控制策略相比,本文所设计的并联式混合动力汽车的制动能量回收率提高了22.8%,燃油经济性提高了4.7%,CO排放量降低了4.4%。  相似文献   

2.
混合动力车辆一般采用基于荷电状态(SOC)闭环的控制策略,对蓄电池组进行频繁充电,使SOC维持在较高水平,影响制动能量的回收,从而导致燃油经济性不理想.为此,利用BP神经网络并结合城市公交运行特点,提出SOC开环控制策略,对公交车未来站点间的运行工况进行预测,减少蓄电池组的充电次数,降低蓄电池组的荷电状态.试验表明,采用该控制策略可以显著降低电池组充电时间和次数,有利于制动能量的回收,百公里油耗降低了3%.  相似文献   

3.
混合动力汽车能量管理策略会影响其动力性和经济性。为了寻找整车的最优节油点及控制策略,文章基于世界轻型汽车测试循环(world light vehicle test cycle, WLTC)工况,提出了利用动态规划算法优化插电式并联混合动力汽车能量管理策略。以发动机、电机的扭矩和角速度作为动态规划的控制变量,以保证电池荷电平衡和燃油最小为目标,建立动态规划模型。仿真结果表明,所提出的能量管理策略能使电池荷电状态(state of charge, SOC)保持在设定范围之内,且相对于基于标定经验规则的能量管理控制策略,节油率能达到5.78%,此方法对于整车厂(original equipment manufacturer, OEM)制定并联式混合动力汽车整车控制器能量控制策略及实车标定工作有一定的参考意义。  相似文献   

4.
全轮驱动混合动力汽车再生制动系统控制策略   总被引:1,自引:0,他引:1  
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略.综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真.结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收.  相似文献   

5.
以提高整车的最小燃油消耗为控制目标,研究了串联混合动力推土机的能量管理策略。首先,根据双电机独立驱动的串联混合动力推土机结构,建立了发动机、发电机、电机及其控制器、超级电容、推土机动力学的数学模型;然后,基于发动机最佳燃油消耗功率曲线,提出一种恒温器式与功率跟随式相结合的能量管理控制策略;最后,采用MATLAB/Simulink软件,通过理论与试验相结合建模方法对串联混合动力推土机的整机和控制策略进行了仿真建模,利用130 s推土机的典型工况对动力源的能量分配和综合工况的经济性进行了仿真研究。研究结果表明:该策略可对发动机输出功率与超级电容充放电功率进行合理分配,满足整车功率需求,超级电容充放电次数明显减少且荷电状态(SOC)值在最佳工作区间内;混合动力发动机比原机型发动机燃油消耗率降低,发动机负载波动也明显减小,原机型发动机燃油消耗量为1 512 g,混合动力发动机燃油消耗量为1 358 g,其比原机型节油10.2%,整机燃油经济性得到明显提高。该方法是一种有效的串联混合动力推土机能量管理方法。  相似文献   

6.
以提高发动机工作效率为目标,根据一款新型混联式混合动力客车的结构特点,划分发动机的工作区域,采用一种功率均衡的控制策略,以电池功率为控制变量对发动机的工作点进行优化,并且引入了电池荷电状态PI控制函数。基于Matlab/simulink平台建立前向整车仿真模型,通过仿真结果表明:其燃油经济性与基于等效燃油最小控制策略相比提高6.74%,同时电池SOC能够控制在预定的范围内运行。  相似文献   

7.
针对并联混合动力汽车(PHEV),提出一种模糊多目标整车控制策略.通过应用电动机等效燃油消耗的概念,将整车燃油消耗与尾气排放同时作为优化目标.应用模糊逻辑和最小加权偏差法,并根据当前工况对优化目标的偏好情况,求得瞬时最优工作点.基于ADVISOR仿真平台的研究表明,模糊多目标控制策略(FMCS)相对基于规则的控制策略(RBCS)能够在不损失车辆动力性能的前提下有效降低燃油消耗和尾气排放,同时将电池荷电状态(SOC)维持在合理范围内.  相似文献   

8.
针对并联型混合动力汽车,为了提高燃油经济性,在满足驾驶性能和车辆动力要求的前提下,提出了一种基于智能优化规则的能量管理策略。首先,考虑发动机最优工作区和电池的荷电状态,根据一定的工程经验,选取合适的发动机最优工作区转矩和电池荷电状态的阈值,设计了基于规则的能量管理控制策略。然后,考虑到规则控制中一些阈值参数不确定的问题,应用了一种智能优化算法——粒子群算法优化规则控制策略的阈值参数。最后,将所设计的控制策略在多种国际标准工况下进行仿真对比,结果表明,较纯发动机运行而言,普通规则控制策略可以平均节省14.9%的燃油,而基于智能优化规则的控制策略可以平均节省22%的燃油。  相似文献   

9.
在混合动力能量管理策略中,基于电池荷电状态(SOC)反馈的等效燃油最小控制策略(ECMS)在某些时刻点由于惩罚函数取值不合适,会出现惩罚过度,导致燃油消耗量的增加.文中采用一种可变SOC参照的方式来解决这一问题:在工况已知的情况下,将行驶工况划分为若干个运动学区间,任意区间中,用电池初始剩余容量减去该区间的制动回收能量,差值作为该区间中电池倾向于放电时的参考值,并以此为基础构建等效因子.最后以标准行驶循环工况NEDC为例,运行基于ECMS框架的整车模型.仿真结果表明,与传统的基于固定SOC参照的ECMS相比,文中提出的方法在维持电量不变的同时提高了燃油经济性.  相似文献   

10.
针对前轮驱动的电动汽车提出了一种基于模糊逻辑的制动力分配及能量回收控制策略。同时考虑了制动踏板行程、车速(电机转速)、电池荷电状态等对电动汽车制动力分配的影响,使动力分配更加合理,从而有效地回收制动能量,提高能量利用率。仿真结果表明了该控制策略的有效性和优越性。  相似文献   

11.
建立以电池SOC为状态变量,以后驱电机和ISG (integrated starter and generator)电机输出转矩为控制变量,以整车燃油消耗最小为目标的能量管理优化模型,然后基于极小值原理设计上述优化问题的求解流程,从而获得基于极小值原理的插电式四驱混合动力汽车能量管理控制策略,最后在建立整车系统仿真模型的基础上对该能量管理控制策略进行仿真,并将仿真结果与基于CD-CS模式规则控制策略的仿真结果进行对比。结果表明,提出的控制策略具有良好的燃油经济性,与CD-CS模式规则控制策略相比,提出的控制策略使整车百公里油耗降低了28.18%。  相似文献   

12.
考虑混合动力汽车制动安全性和燃油经济性,提出了一种基于电池SOC值和制动强度的再生制动力控制策略.提出了通过调节CVT的速比及控制电机工作在高效区来提高电机发电效率的再生制动控制方法.进行了整车再生制动系统建模和典型城市驱动循环工况下的仿真,结果表明,提出的CVT速比控制策略能使以CVT为变速器的混合动力汽车比以MT为变速器的混合动力汽车在ECE EUDC驱动循环工况下的再生制动能量回收率提高2.86%.  相似文献   

13.
单轴并联式混合动力城市客车再生制动挡位决策   总被引:2,自引:2,他引:0  
设计一种串并混联式复合制动踏板方案,并针对该方案制订再生制动阶跃式制动力分配曲线.分析了影响再生制动效率的多种因素,提出运用序列二次规划(SQP)算法优化挡位决策和电机输出扭矩以解决再生制动中回收效率与制动力分配曲线和电机转速的矛盾.在Cruise和Matlab/Simulink联合仿真平台下,建立了单轴并联式混合动力传动系统整车模型,基于欧洲公交客车循环工况(UDC)进行了仿真研究.结果表明,电池荷电状态(SOC)比采用传统双参数换挡规律提高了近1.5%.进行了三种典型制动工况下实车试验,取得了与仿真结果相吻合的试验结果,其中正常制动工况下的能量回收率比传统双参数换挡策略提高了近11.00%.  相似文献   

14.
混合动力城市公交车运行过程中平均速度偏低,导致过度使用动力电池,由于无法使用混合动力,使得整个行驶工况中不能保持良好的燃油经济性。本文提出了基于车速和电池荷电状态(SOC)规划的控制策略,在MATLAB/Simulink软件中搭建所设计的控制策略模型,并将控制策略导入CRUISE软件中,与所搭建的整车动力系统模型进行联合仿真。研究结果表明:基于车速和SOC规划的混合动力客车控制策略与基于规则的控制策略相比,整车燃油经济性提高了2.7%,且SOC的平衡性可控制在5%以内。  相似文献   

15.
ISG混合动力再生制动系统硬件在环仿真   总被引:5,自引:0,他引:5       下载免费PDF全文
再生制动可显著降低燃油消耗从而降低废气排放,是混合动力汽车的重要工作模式之一.以ISG型混合动力长安轿车为原型,进行了基于制动能量分配控制策略的整车制动动力学建模与离线仿真,并在ISG型混合动力系统上构建了dSPACE环境下的再生制动试验平台,进行了基于再生制动控制策略的硬件在环仿真,对不同车速、制动强度、变速器档位和离合器状态下的再生制动系统性能进行了测试与分析,为优化混合动力汽车再生制动控制策略奠定了基础.  相似文献   

16.
为了保证纯电动汽车在减速或制动时获得最大的制动能量回收效率,同时保证车辆行驶的安全,以前驱型电动汽车为研究对象,通过应用模糊控制理论,提出了以制动强度z、电池的荷电状态(SOC)、制动意图的识别K为输入,制动能量回馈比a为输出的模糊控制策略;并建立再生制动模型,将此模型嵌入到ADVISOR的整车模型中,在ADVISOR软件中的城市道路循环(urban dynamometer driving dchedule,UDDS)工况下进行仿真。研究结果表明,在频繁制动的UDDS工况下,制动能量回收率比ADVISOR整车控制策略时的回收率提高了6. 55%,同时又可延长纯电动汽车的续航里程。  相似文献   

17.
以燃油消耗最小为目标,在Matlab/Simulink中搭建一种混联式混合动力汽车的动力系统模型,基于逻辑门限值的能量管理策略分别在城市和市郊两种道路工况下进行仿真。仿真结果表明,整车需求转矩可以进行有效分配,维持了电池荷电状态的平衡,城市道路工况百公里油耗为4.8 L,市郊道路工况百公里油耗为1.596 L;与传统的燃油车进行相比,城市道路工况下百公里油耗降低率达到了37.4%,高速道路工况下达到了71%。  相似文献   

18.
在传统汽车制动理论的基础上,基于最大回收制动能量和制动的安全性,提出了一种全轮驱动混合动力汽车制动能量分配与再生制动控制策略。综合考虑电机电池效率等限制因素后,进行整车再生制动系统建模和典型制动工况下的仿真。结果表明,在制动车速为30 km/h,制动强度Z分别为0.1、0.3、0.5下最大能量回收率分别可达87.5%、47.8%、28.6%,采用提出的制动能量分配与再生制动控制策略能满足整车制动力分配的要求,并实现高效的制动能量回收。  相似文献   

19.
针对电动汽车混合制动系统,通过对整车制动动力学和ECE R13法规的分析,理论上确定了混合制动系统的安全制动区域.在此区域内,以充分回收车辆制动能量为目标,在满足ECE R13制动法规和整车制动稳定性的前提下,对于前后轴机械制动力分配固定的混合制动系统,提出了一种电动机制动力与摩擦制动力分配的优化方法.以工作模式切换点的坐标及制动力分配曲线的斜率为优化对象进行优化.此外,基于制动力分配影响因素多变的特点,设计了一种3参数输入的制动力分配模糊控制策略.分别建立新的制动控制策略模型嵌入到ADVISOR2002中进行仿真分析,从而验证改进控制策略的有效性.结果表明2种新的控制策略能够有效改善电动汽车的制动能量回收率.  相似文献   

20.
一种改进的再生制动控制策略优化   总被引:1,自引:0,他引:1  
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号