首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
采用真空热解炉—质谱联用仪研究了不同电子轰击能量下,来自淮南煤田的烟煤、无烟煤和天然焦的热解产物的分子组成分布特征.结果表明,烟煤热解产物的离子种类数量(TNI)、数均分子量(■)和重均分子量(■)与无烟煤热解产物相似,与天然焦热解产物有很大不同,但是烟煤热解产物的总离子量(TII)多于无烟煤热解产物,这表明烟煤热解产物的分子组成分布与无烟煤热解产物是相似的,与天然焦热解产物有很大不同;在三种煤热解产物中,通过对代表烷基苯的特征碎片离子C_7H_7~+的量与代表苯的分子离子C_6H_6~(·+)的量的比值C_7H_7~+/C_6H_6~(·+),以及代表脂肪烃的特征碎片离子C_4H_9~+的量与C_6H_6~(·+)的量的比值C_4H_9~+/C_6H_6~(·+)进行分析,得到三种煤热解产物中的C_7H_7~+/C_6H_6~(·+)的值比较接近,但是天然焦的C_4H_9~+/C_6H_6~(·+)值却大于无烟煤和天然焦,这表明三种煤热解产物中的烷基苯相对于苯的含量相似,但是天然焦热解产物中脂肪烃相对于苯的含量却比烟煤和无烟煤的相应含量高.通过对不同电子电离能量下获得的三种煤热解产物质谱数据进行分析,得到适宜的电子电离能量范围是65~75 eV.研究显示,利用真空热解炉—质谱联用仪可以快速获得煤热解产物的分子组成分布信息,为煤的非燃料用途提供指导.  相似文献   

2.
本文用热分析方法,对青海湖盐下氯镁石(MgCl_2·6H_2O)的热分解反应进行了TG、DTG、DTA、DSC的测定,配合分解气的化学分析、气相色谱分析和固体物的红外光谱分析,解释了DTA曲线,初步推断了MgCl_2·6H_2O热分解的机理。 MgCl_2·6H_2O 118℃—→熔融 MgCl_2·6H_2O 156℃—→MgCl_2·4H_2O 2H_2O MgCl_2·4H_2O 191℃—→MgCl_2·2H_2O 2H_2O MgCl_2·2H_2O 200℃—→MgCl_2·H_2O H_2O MgCl_2·H_2O 251℃—→MgOHCl HCl MgOHCl 461℃—→MgO HCl总失重率为78.5%。用Kissinger法测得MgCl_2·6H_2O→MgCl_2·4H_2O 2H_2O的表观活化能为30.4KCal/mol。MgOHCl→MgO HCl表观活化能为49.7KCal/mol。测定热分解反应的热效应为97.2KCal/mol。  相似文献   

3.
采用MD、MD9D和正庚烷三组分作为生物柴油混合替代物,替代物机理包含3 299种组分、10 806个基元反应。应用CHEMKIN-PRO反应速率分析法对燃烧氧化过程中燃料分子高低温主要反应路径和重要中间组分衍化过程进行了详细探究。结果表明:MD和MD9D在低温阶段主要通过脱氢加氧、异构化反应以及酮类物质的分解反应进行消耗,高温阶段主要是低温反应中间产物C—O、C—C键β分解反应、部分高温脱氢以及异构化反应最终生成C_2H_4等小分子产物。另外,MD和MD9D中不同碳原子位置C—H键能不同,邻近羧基以及C≡C双键碳原子处C—H键较弱,易发生脱氢反应生成烷酯基。在过氧酯基异构化生成过氧羧酯基过程中,不同环数过渡环张力大小以及反应势垒不同,异构化难易程度不同,而六元过渡环的张力较小,反应势垒较低,最易发生异构化反应,异构化反应产物更多。  相似文献   

4.
正戊醛、异戊醛、对氯苯甲醛、胡椒醛、环已酮与二茂铁在浓H_2SO_4(-10℃)中缩合,产物用碳酸氢钠水溶液水解,水解产物在F_3CCO_2H催化下发生巯基化反应,合成了五种含硫二茂铁衍生物,(C_5H_5)Fe(C_5H_4CR′R~2SCH_2CO_2H)(I,R′=H,R~2=n-C_4H_9;Ⅱ,R′=H,R~2=i-C_4H_9;Ⅲ,R′=H,R~2=C_6H_4Cl-4;Ⅳ,R′=H,R~2=C_6H_3O_2CH_2-3.4;V,R′R~2=-(CH_2)-_5);再由Ⅲ和V与氨和羟胺反应,合成两种含氮二茂铁化合物,(C_5H_5)Fe(C_5H_4CH(NH_2)(C_6H_4Cl-4))(Ⅵ)和(C_5H_5)Fe(C_5H_4C(NH)H)(CH_2)_5)(Ⅶ)。  相似文献   

5.
以正辛烷(n-C_8H_(18))、异辛烷(i-C_8H_(18))、甲基环己烷(CH_3cyC_6)和正丁基苯(A1C_4H_9)4类大分子碳氢燃料为对象,探究了简化建模方法对含不同官能团的碳氢化合物燃烧反应动力学的适用性。建立了上述4类碳氢燃料的简化反应动力学模型,包含124个化学组分和854个基元反应;采用热解反应和氧化反应过程的主要中间产物分布、点火延时时间、层流燃烧速率等基础燃烧数据对该模型进行验证;分析了4类燃料中间产物的碳分布及对宏观燃烧特性的影响;以n-C_8H_(18)为例,采用误差传播直接关系图谱法对所建简化模型进行进一步简化,简化后的模型包含56个化学组分和387个基元反应。结果表明:本简化建模方法不仅对直链烷烃和支链烷烃有较好描述,同时适用于环烷烃和烷基芳香烃的燃烧化学;不同官能团的大分子碳氢燃料裂解中间产物的不同决定了其宏观燃烧特性;该建模方法通过进一步简化,可有效与先进计算流体力学CFD软件或代码耦合,用于对真实发动机系统的仿真模拟。  相似文献   

6.
在超临界甲醇中使用CuO-ZnO/Al_2O_3复合氧化物催化液化微晶纤维素,考察了反应温度、反应时间、催化剂用量、甲醇填充率对微晶纤维素转化率的影响,并通过正交实验确定其最佳反应条件:反应温度280℃,反应时间90 min,催化剂用量125%、甲醇填充率60%.通过FT-IR和GC-MS对其催化液化产物进行分析,结果表明在超临界甲醇中,微晶纤维素主要发生热解与醇解反应,纤维素大分子分解形成小分子化合物,添加催化剂可促进小分子化合物脱水并进行加氢重整,得到C_2~C_7醇类为主要液化产物.  相似文献   

7.
采用密度泛函及含时密度泛函理论(TD-DFT)的B3P86方法,在6-311++g(2df)基组水平上计算2-甲基环己酮(CH_3—C_6H_9O)分子从基态到第1~第8个激发态的激发能、波长和振子强度,并考察非对称有限电场对CH_3—C_6H_9O分子激发态的影响规律.结果表明:CH_3—C_6H_9O分子的S2,S3,S4,S5,S8等激发态激发能随电场强度的增大呈急剧减小趋势,即外电场作用下CH_3—C_6H_9O分子易于激发和离解.  相似文献   

8.
邻苯二甲酸盐(Sr2+)的制备及热分解反应研究   总被引:1,自引:3,他引:1  
合成了邻苯二甲酸盐(Sr^2 ),用热重(TG)和示差扫描量热(DSC)法研究了邻苯二甲酸盐的热分解过程.一水合邻苯二甲酸锶的热分解过程分为4个阶段:在57~140℃脱水生成无水盐;在510~610℃分解生成Sr3(C8H4O4)(CO3)2;在610~860℃分解生成Sr3O2CO3;在860—1390℃分解生成单质Sr.分解的气相产物有邻苯二甲酸酐,9,10—蒽醌和CO2,  相似文献   

9.
在无水溶剂中合成了[Sc(SSCN(C_2H_5)_2)_3]及(C_2H_5)_2NH_2·[Y(SSCN(C_2H_5)_2)_4]~-,并通过元素分析、红外光谱、紫外光谱、差热——热重分析和摩尔电导等研究了配合物的性质。  相似文献   

10.
本文阐述了用FT-IR光谱仪对乙醇(C_2H_5OH)在WO_3半导体气敏材料表面反应的研究。实验结果表明:当t(温度)=250℃时。气体产物有乙醚(C_2H_5-O-C_2H_5)生成;295℃407℃时只有C_2H_4生成。同时发现,250℃相似文献   

11.
镧系元素配合物[C_4H_9O]~ [Ln(S_2CNC_4H_8)_4]~-(Ln=Pr和Sm)是从LnCl_3和NH_4(S_2CNC_4H_8)在THF中反应45h而得到的。[C_4H_9O]~ [Ln(S_2CNC_4H_8)_4]~-的晶体和分子结构通过单晶X—射线结构分析获得,晶体属单斜晶系,空间群为P2_1/C,单胞参数分别为a=1.2233,b=1.5220,c=1.8308nm,β=98.62°(Pr—配合物);a=1.2208,b=1.5200,c=-1.8352nm,β=98.59°(Sm—配合物),晶体结构是从Patterson和Fou—rier方法解得,并用全矩阵最小二乘法修正,最后偏离因子R=0.057(Pr)和R=0.042(Sm)。两个化合物是属于异质同晶,它们阴离子部分是由Pr和Sm原子和配位体的八个S原子构成扭变的三角形十二面体的配位结构。  相似文献   

12.
采用微型脉冲催化反应技术,在250—450℃和0.3 MPa的条件下,以η-Al_2O_3、HM、0.5wt% Pt/η-Al_2O_3、0.5wt% Pt/HM、0.05wt% Pd/HM、0.5wt% Pd/HM和3.5wt% Pd/HM等为催化剂,研究了已烷异构体转化的反应机理。同时,还研究了C_6烷烃在Pd/HM上的异构化反应中的温度影响以及Pt/Al_2O_3的失活特性。C_6烷烃转化的脉冲量关系和产物分布表明,在HM上的加氢裂化是双分子反应,而在氢压不变的条件下,异构化反应是单分子反应。此外,对异构化反应中生成2,2-二甲基丁烷来说,Pd/HM比Pt/HM的选择性要高。  相似文献   

13.
鉴于太阳光催化分解水获取氢能源反应中,产氢效率受到牺牲剂组成和结构的影响,以Pt/TiO_2为模型催化剂,125 W高压汞灯为光源,在常压环境下,比较不同一元醇(甲醇、乙醇、正丙醇、正丁醇)和多元醇(乙二醇、丙三醇、丁四醇、聚乙二醇)的反应性能.实验结果发现,乙二醇作为牺牲剂时产氢效率最高,可达到17.62 mmol·(g·h)-1.研究还发现,反应不仅生成了H2和CO_2,还生成了CO、CH_4、C_2H_6、C_2H_4等产物.基于产物分布,进一步对醇分子作为牺牲剂时,光解水的产氢机理进行了探讨.  相似文献   

14.
使MoCl_5与C_4H_3OCOOH在氯苯溶剂中反应,合成了新的过渡金属钼配合物MoO_2Cl_2(C_4H_3OCOOH)_2。研究了该化合物的红外光谱、紫外-可见光谱、光电子能谱和电氧化还原性质,还用DTA和TG技术研究了它的热分解过程;同时讨论了上述性质与该配合物的结构之间的关系。  相似文献   

15.
首次合成出两种未见文献报导的杂多化合物2[N(C_4H_9)_4]_2O·8MoO_3·1/2 V_2O_5·8SiO_2·6H_2O和1.15[N(C_4H_9)_4]_2O·7MoO_3·1/2 V_2O_5·8H_2O,并测定了它们的IR、UV、XRD、TG和DTA。前者对光敏感,放置时由黄变绿,其酸溶液可被乙醚萃取,生成醚合物;其酸不稳定,放置时即分解而出现沉淀,得不到固体酸,其阴离子与四丁基铵阳离子之间有较强的相互作用。后者的酸溶液也不稳定,放置时亦分解而出现沉淀;其阴离子与四丁基铵之间的作用与前者不同,它对光不敏感。  相似文献   

16.
本文报道了 Ni[(C_4H_9O)_2PS_2]_2与氮碱的加合反应,用光谱法测定了苯溶液中加合反应的平衡常数,在31℃时吡啶加合物的 K_1=33.1,β_2=7.94×10~3,联吡啶加合物的 K=2.51×10~6,用热重分析和 NMR 方法研究了加合物的热分解性质、磁性质和自旋密度分布.当 d~8低自旋的标题化合物与吡啶和正丁胺反应生成 d~8高自旋的加合物时,观察到了顺磁效应,未成对自旋密度离域到吡啶环和正丁胺上,导致各类质子共振向低场位移.未成对电子自旋密度通过σ键体系从 Ni(Ⅱ)离域到配体上.  相似文献   

17.
采用密度泛函理论B3LYP方法研究基态下Re~+与C_2H_4连续反应的机理.Re~+与C_2H_4的反应是一个典型的插入-消除机制,第一步反应(形成IM_1的过程)放出的热量高达416.64kJ/mol.Re~+与C_2H_4一旦反应,整个反应就能自动进行下去,这为高能材料的研究提供了参考.Re~+与C_2H_4生成Re(C_2H_2)~+,放出1分子的H_2,反应生成的产物继续与C_2H_4反应,随着吸附C_2H_4的增多,吸附变得越来越难,反应决速步骤的能垒也越来越高,C-H键的断裂随之变得越来越困难,H_2也越来越难形成.当吸附到第4个C_2H_4时,C-H键已经很难断裂.  相似文献   

18.
标题化合物(C_(20)H_(24)O_6·AgNO_3·1/2C_4H_9OH·1/2H_2O)的晶体结构已通过X射线衍射确定。属单斜晶系,空间群为C_(2h)~5-P2_1/n,晶胞参数为:a=18.427(4)(?),b=14.079(2)(?),c=18.471(3)(?),β=93.56(3)°,V=4783(2)(?)~3,Z=8。结构通过帕特逊函数和付里叶函数求解,用块矩阵最小二乘修正,最后的偏差因子R=0.065(4908个I/σ(I)≥1.96的独立衍射)。冠醚的六个氧基本共面,并与Ag配位,Ag的第七配位为NO_3~-的O,平均Ag-O_(crown)为2.7(?),Ag-O_(NO_3~-)为2.5(?)。不对称单位中两个冠醚加合物通过一个H_2O和一个C_4H_9OH用氢键联接在一起。  相似文献   

19.
用热失重方法分析了聚亚苯基苯并二唑(PBO)纤维在不同气氛中的热分解行为,采用O zaw a法计算了PBO纤维在氮气和空气两种气氛中的热分解活化能。结果表明升温速率对PBO纤维的热分解温度有较大影响;氧气作为热分解反应的引发剂,大大降低了分解反应的活化能;由IR光谱对不同温度裂解产物结构的分析,推测了热氧化降解对PBO纤维分子结构的影响;在不同失重率时几乎相同的热分解活化能,表明无论热分解的气氛如何,PBO纤维的热分解均是一个无规引发的单阶段过程;结合PBO纤维在两种气氛中的热分解机理,解释了分解气氛对残碳率的影响。  相似文献   

20.
TGA/SDTA、DSC和Py-GC-MS分析叶醇糖苷热降解性质   总被引:1,自引:0,他引:1  
为了开发热稳定型香原料,采用热重分析/同步差热分析法(TGA/SDTA)、差示扫描量热法(DSC)和在线热裂解气相色谱质谱法(Py—GC—MS)对叶醇糖苷的热降解行为及产物进行了研究.TG—DTC曲线显示主要失重区间在230—370℃,峰值为339.8℃,总失重96.9%;DTA显示在290—360℃有一个吸热峰,峰值为339.8℃;DSC显示230~340℃为吸热区间,峰值为301.3℃;Py—GC—MS测定了在200,350,500,650℃各温度下叶醇糖苷裂解的主要产物.在200℃,裂解量很少,350℃时则产生大量的叶醇和少量副产物,随着温度的升高,500℃和650℃时产生的副产物增加,使叶醇糖苷释放叶醇的最佳温度是350℃;热裂解的特征产物是叶醇,说明主要的裂解反应是氧糖苷键的断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号