首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 233 毫秒
1.
[目的]利用最省刻度尺的已有研究成果研究极小优美图的构造方法.[方法]对任意正整数n≥2,在长度是n的无刻度直尺上最少刻多少个刻度,就能度量1-n的所有长度,这就是最省刻度的尺子问题.给定正整数n,存在m个整数组成的集合{ai},满足0=a12<…m=n,使得任意整数s(0≤s≤n)均可表示成该集合中两个元素的差aj-ai,则称{ai}为n上的受限差基.根据极小优美图和受限差基的定义,将极小优美图问题等效为最省刻度尺问题进而得到极小优美图的构造方法.[结果]由n≥5时Kn不是优美图和n≥1时图K4+Kn,n是优美图的结论,得到了边数是6至82的极小优美图顶点数的上下界;用构造方法给出了图K3∨K1,3,n-3e,K3,n∨K3-e和K2,3,n  相似文献   

2.
如果G的任意s个点的导出子图中至少含有t条独立边,则称图G为强-[s,t]图。本文证明了以下结果:设G是k-连通的强-[k+4,2]图,且δ≥k+1,则G或者有Hamilton路或者同构于(∪k+2i=1Hi)∨Gk,其中Hi≌K2,i=1,2…k+2,Gk是含有k个点的任意图。  相似文献   

3.
本文讨论下列Duffing方程组两点边值问题的解{u″+g(t,u)=e(t), u(0)=a,u(2π)=b,其中t∈[0,2π],u:[0,2π]→Rn,g:[0,2π]×Rn→Rn是势Carathéodory向量值函数,e:[0,2π]→Rn是L2[0,2π]中给定的向量值函数,a=(a1,a2,…,anT和b=(b1,b2,…,bnT是两个给定的向量.利用L2空间中的一个minimax定理讨论了Duffing方程组边值问题的解,获得了这一边值问题的一个存在唯一性定理.  相似文献   

4.
如果对任意的f(x)=a0+a1x, g(x)=b0+b1x∈R[x], f(x)g(x)=0蕴含所有aibj∈J(R), 则环R称为线性J-Armendariz环(简称LJA环). 其中: i,j∈{0,1}; J(R)是R的Jacobson根. 考虑LJA环的性质及与其他相关环类的关系, 给出了2-primal环的无限直积非2-primal环的简单例子, 并证明了Koethe猜想有肯定解当且仅当任意NI环的多项式环是LJA环.  相似文献   

5.
讨论非连通图((P1∨Pn)∪Gr和(P1∨Pn)∪(P3r)及Wn∪St(m)的优美性, 证明了如下结论: 设n,m为任意正整数, s=[n/2], r=s-1, Gr是任意具有r条边的优美图, 则当n≥4时, 非连通图((P1∨Pn)∪Gr和(P1∨Pn)∪(P3r)是优美图; 当n≥3, m≥s时, 非连通图Wn∪St(m)是优美图. 其中, Pn是n个顶点的路, Kn是n个顶点的完全图, n是Kn的补图, G1∨G2是图G1与G2的联图, Wn是n+1个顶点的轮图, St(m)是m+1个顶点的星形树.  相似文献   

6.
把非哈密顿图Km ∨(Km+Kn-2m)(1≤m≤n2)扩充为Ks∨(∑s+1i=1Kmi) (∑s+1i=1mi=n-s,n≥3,1≤s≤n-12),并讨论此类图的简单性质.  相似文献   

7.
设K_(1~r,s)为k_1×k_2×…×k_(r+1)的完全(r+1)部图,其中k1=k2=…=kr=1,kr+1=s.将YIN提出的蕴含K12,s、K13,s可图序列的一个充分条件推广到一般情况,给出了s≥r≥2,n≥s+r条件下,n项可图序列π=(d1,d2,…,dn)蕴含K1r,s可图的一个充分条件.  相似文献   

8.
哈密尔顿图的一类新的局部化充分条件   总被引:2,自引:1,他引:1  
设L为图G的一个导出子图 ,若有 x ,y∈V(L) ,只要dL(x ,y) =2就有max{dG(x) ,dG(y) }≥ |G| / 2 ,则称L有局部Fan性质 .该文证明了以下结果 .G是一个 2_连通的 {K1.3 ,B1} -free图 .对任意一个整数s≥ 0 ,若G的任一个导出子图L∈ {Bi,0≤i≤s;Zs+2 }均有局部Fan性质 ,则G是Hamiltonian图 ,除非s=2且G H9.由此得到每个 2_连通的 {K1.3 ,Bi,0≤i≤s;Zs+2 }_free图除s =2且该图同构于H9外 ,均为Hamiltonian图 .  相似文献   

9.
将k-优美图的概念进行了推广,引入A~B优美图的概念,并以此为基础,得到了非连通图(P3∨(Km))∪G及(C3∨(Km))∪G是优美图的一个充分条件.证明了对任意正整数k,m,n,t,当k≤n≤t,n+k-1≤m时,图(P3∨(Km))∪(k∪j=1Kn,t)和(C3∨(Km))∪(k∪j=1Kn,t)是优美图;当k=1,2,2≤n<2m+1时,图(P3∨(Km))∪k∪j=1P(j)n,(C3∨(Km))∪k∪j=1P(j)n和(P3∨(Km))∪Pn∪St(t)是优美图;当2≤n≤2m +1时,(C3∨(Km))∪Pn∪St(t)是优美图.本文的结果推广了现有的一些结论.  相似文献   

10.
主要给出了图G恰好含有s个K3和k-s个K4的最小度条件即:设G是一个简单图,s,k是两个正整数且s k,其中G的顶点个数n≥3s+4(k-s)+3,如果G中任意两个不相邻顶点的最小度之和σ2(G)≥4n-3s-8/|2|或者最小度δ(G)≥3n+2k-s-2/4,则G包含k个顶点不相交的圈C1,C2…Ck,并且Ci=K3其中1≤i≤s,Cj=K4其中sj≤k.  相似文献   

11.
两类非连通图(P2∨Kn∪St(m)及P2∨Kn ∪Tn的优美性   总被引:16,自引:4,他引:12  
对自然数n,m,i∈N, 设Ki表示i个顶点的完全图, Kn 是Kn的补图, St(m)表示m+1个顶点的星形树, Tn为n个节点的优 美树, Pn为n个节点的路, P2∨Kn是P2 与Kn联图. 给出非连通图(P2∨Kn)∪St(m)和(P2 ∨Kn∪Tn, 并论证了当n≥2时, 这两类图都是优美图.  相似文献   

12.
选择黑龙江省帽儿山林场天然次生林内176株10个阔叶树种的解析木,共收集了3 401个枝条的详细数据,建立了一种树冠轮廓模型。分析发现,树冠的形状随着枝深度变化,在树冠上部、中部逐渐扩展,在下部收缩,每个树种呈现不同的曲线形式,天然次生林主要阔叶树种树冠模型可分为上中层和下层两部分建模,上中层模型为hRPCA=a0+a1/ln(RB)+a2/ln(RB)2+a3/ln(RB)3,下层轮廓模型因种不同而有不同,即hRPCB,白桦=b0+b1·(exp(b2)·ln(RB)-1)/b3;hRPCB,黄菠萝=b0+b1·ln(RB)+b2·ln(RB)2;hRPCB,其他=b0+b1·ln(RB)+b2·ln(RB)2+b3·ln(RB)3。经过验证,所建立的树冠轮廓模型拟合和检验效果较好,相关系数都在0.97以上。  相似文献   

13.
设d1,d2,…,dk是k个非负整数,若图G=(V,E)的顶点集V能被剖分成k个子集V1,V2,…,Vk,使得对任意的i=1,2,…,k,Vi的点导出子图G[Vi]的最大度至多为di,则称图G是(d1,d2,…,dk)-可染的。关于平面图的染色,有以下结论:不含4-圈或弦6-圈的平面图是(3,0,0)-可染的。  相似文献   

14.
证明了如下的结论: 设\,$k\geqslant 2$\,是一个正整数, $\mathcal{F}$\,是区域\,$D$\,上的一族全纯函数, 其中每个函数的零点重级至少是\,$k$, $h(z),\,a_1(z),\,a_2(z)\,\cdots,\,a_k(z)$\,是\,$D$\,上的不恒为零的全纯函数. 假设下面的两个条件也成立:\,$\forall f\in\mathcal{F},$ (a) 在\,$f(z)$\,的零点处, $f(z)$\,的微分多项式的模小于\,$h(z)$\,的模; (b) $f(z)$\,的微分多项式不取\,$h(z)$, 则\,$\mathcal{F}$\,在\,$D$\,上正规.  相似文献   

15.
图Cm ∪P+n- 1 是圈Cm 与P+n- 1 的不交并。本文证明了当①m = 4k,n ≥k + 2;②m = 4k + 1,4k - 1 ≤n ≤10k- 7;③m = 4k+ 2,n ≥4k + 1;④m = 4k + 3,4k+ 2≤n ≤10k- 2 时,图Cm ∪P+n- 1 是优美的。  相似文献   

16.
以Q(s,t)(s≥2,t≥1)表示有s+t+1个点的Q形图,主要刻画了它们之间的匹配能序;作为推论,也得到了它们之间的Hosoya指标排序。  相似文献   

17.
研究了单位圆内高阶非齐次线性微分方程的振荡解,得到了方程f(k)+ak-1f(k-1)+…+a0f=F(a0,a1,…,ak-1,和F是单位圆内的亚纯函数)具有1个振荡解空间,其空间中所有解的零点收敛指数为∞,至多除去1个例外值.  相似文献   

18.
当n≥3时,笛卡尔积图Cn×P2是一个多面体图,也称为n棱柱,其中Cn为n长圈,P2为2长路。令G是一个n棱柱的平面嵌入图,k是正整数,若对任意的正整数i(0≤i≤k),从图G中任意删除掉i个两两不交的偶面所得到的图有完美匹配,则称图G是k-共振的。首先得到n棱柱完美匹配数的计算公式;然后对n棱柱的共振性进行讨论,得到了n棱柱是1-共振、2-共振的和k-共振的(k≥3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号