首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
将k-优美图的概念进行了推广,引入A~B优美图的概念,并以此为基础,得到了非连通图(P3∨■)∪G及(C3∨■)∪G是优美图的一个充分条件。证明了对任意正整数k,m,n,t,当k≤n≤t,n+k-1≤m时,图(P3∨■)∪(∪kj=1Kn,t)和(C3∨■)∪(∪kj=1Kn,t)是优美图;当k=1,2,2≤n<2m+1时,图(P3∨■)∪∪kj=1P(j)n,(C3∨■)∪∪kj=1P(j)n和(P3∨■)∪Pn∪St(t)是优美图;当2≤n≤2m+1时,(C3∨■)∪Pn∪St(t)是优美图。本文的结果推广了现有的一些结论。  相似文献   

2.
给出了非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n),且对其优美性进行了研究。证明了如下结论:设n为任意正整数,则当n≥4时,非连通图(K1∨(P(1)n∪P(2)n))∪P(3)n和(K1∨(P(1)n∪P(2)n))∪St(n)均是优美图;其中,Pn是n个顶点的路,Kn是n个顶点的完全图,St(n)是n+1个顶点的星形树,G1∨G2是图G1与G2的联图。  相似文献   

3.
对自然数n,m,i∈N,设Ki表示i个顶点的完全图,(Kn)表示Kn的补图,St(m)表示m+1个顶点的星形树,G,为有r条边的优美图,Pn为n个节点的路,P2 ∨(Kn)是P2与(Kn)联图.给出了非连通图(P2 ∨(Kn))(r1,r2,0,…,0)∪St(m)及(P2∨(Kn))(r1 +a,r2,0,…,0)∪Gr的定义,并论证了当n≥2时,这两类图都是优美图.  相似文献   

4.
非连通并图的优美标号研究   总被引:2,自引:1,他引:1  
设图G3是长度为3的圈C3或为含3个顶点的路P3,文章给出了非连通图(G3∨Km)∪Kn,t和(G3∨Km)∪Pn,并证明了对任意正整数m,n,t,如果min{n,t}≤m,则图(G3∨Km)∪Kn,t是优美图;如果2≤n≤2m+1,则图(G3∨Km)∪Pn是优美图;同时证明了对任意正整数m,n,图(G3∨Km)∪St(n)和(G3∨Km)∪W2n+5是优美图.其中,Pn是n个顶点的路,G1∨G2是图G1与G2的联图,Km是m个顶点的完全图,m是Km的补图,Kn,t是具有二分类(X,Y)的完全偶图,且|X|=n,|Y|=t,St(n)是具有n+1个顶点的星形树,Wn是具有n+1个顶点的轮图.  相似文献   

5.
文章证明了对任意自然数n≥1,P≥1,K≥1,当m1=2p+3或2p+4时,图W(k)m1U Kn,p为优美图,其中W(k)m1为由k个轮Wmi(i=1,2,…,k)的中心顶点合并后构成的连通图;当m1≥3,n≥[m1/2]时,非连通图W(k)m1∪St(n)为优美图;对任意自然数P≥1,图W(k)2p2+i∪Gpi为优美图,其中,Gpi表示p条边的i-优美图(i=1,2);对任意自然数n≥1,当m1=2n+5时,图W(k)m1∪(C3VKn)为优美图.  相似文献   

6.
证明下面的结论:对任意自然数n≥2,图(K_1∨(P_n∪P_(n+1)))是(n-1)-强优美图.对任意自然数n≥3,图(K_1∨P_n~((1))∪P_n~((2))))∪G是优美图;对任意自然数n≥4,图(K _1∨(P_n~((1))∪P_n~((2))∪P_n~((3)))∪H是优美图,其中k=[n/2].P_n是n个顶点的路,G_i为含有i条边的优美图.给定优美图G_(n-1)和其优美标号f,G_(k-1)和其优美标号g,设u∈G_(n-1),v∈G_(k-1)且f(u)=g(v)=0,取不同的两边xy和x′y′,点x与u合并后得到的图记为G,点x′与v合并后得到的图记为H.  相似文献   

7.
文章证明了对任意自然数n≥1,p≥1,k≥1,当m1=2p+3或2p+4时,图W(k)m1∪Kn,p为优美图,其中Wm1(k)为由k个轮Wmi(i=1,2,…,k)的中心顶点合并后构成的连通图;当m1≥3,n≥[m1/2]时,非连通图Wm1(k)∪St(n)为优美图;对任意自然数p≥1,图W2p+2+i(k)∪Gip为优美图,其中,Gpi表示p条边的i-优美图(i=1,2);对任意自然数n≥1,当m1=2n+5时,图Wm1(k)∪(C3∨■)为优美图。  相似文献   

8.
文章通过对图F(t)m的k-强优美性研究,利用k-强优美图的定义,给出对任意自然数t≥1,m≥2,当k=[m/2]时,F(t)m是k-强优美图,非连通图F(t)m∪Gk-1是优美图.当m≥2p+2时,非连通图F(t)m∪Kn,p是优美图,其中,Fm是有m+1个顶点的扇形图,F(t)m是合并t个扇Fm,F2m,…,F2t-1m的中心顶点构成的连通图,Gk-1是有k-1条边的优美图.  相似文献   

9.
二分图是一类有着广泛应用的图,但这类图并不都是优美图,因此需要进一步深入研究它的优美性。本文根据马克杰教授提出的猜想:完备二分图Km,n的冠是k-优美图(m≤n,k≥2),利用构造法证明了当m=1或m=2,k≥2时,猜想成立;当m≥3,k≥(m-2)(n-1)时,猜想成立。拓展了k-优美性的研究范围。  相似文献   

10.
讨论非连通图(P1∨Pm)∪C4n∪P2的优美性.证明如下结论:设m、n为任意正整数,当m≥2,1≤n≤2m-2时,非连通图(P1∨Pm)∪C4n∪P2是优美图,其中Pn是n个顶点的路,G1∨G2是图G1与G2的联图,C4n是4n个顶点的圈.  相似文献   

11.
文章给出了非连通图(P1∨Pn)∪St(m)和(P(1)1∨Pn)∪(P(2)1∨P2n)及(P2∨n)∪Gn-1,证明了对任意自然数n,设s=(n)/(2),则当n≥3,m≥s时,非连通图(P1∨Pn)∪St(m)是优美图;当n≥3时,非连通图(P(1)1∨Pn)∪(P(2)1∨P2n)是s-优美图;当n≥2时,非连通图(P2∨n)∪Gn-1是优美图;其中,Pn是n个顶点的路,P1、P(1)1和P(2)1均是只有一个顶点的平凡图,G1∨G2是图G1与G2的联图,St(m)是m 1个顶点的星形树,Kn是n个顶点的完全图,n是Kn的补图,Gn-1是任意一个n-1条边的优美图.  相似文献   

12.
图的标号问题是组合数学的一个热门课题,在编码理论、网络、循环设计等许多领域都有重要应用.但对于一个图既是优美的又是协调的研究甚少.为此,对正整数k,n,m ∈N (N 为正整数集合),给出了一类图(K2∨(-Kn))·(K2∨(-Km)),并通过构造标号函数的方法,论证了当n=2k时,该图是优美图;同时也论证了当m=n-1(n≥2)时,该图是协调图.  相似文献   

13.
对自然数n,m,i∈N,设Ki表示i个顶点的完全图,Kn是Kn的补图,St(m)表示m+1个顶点的星形树,Tn为n个节点的优美树,Pn为n个节点的路,P2∨Kn是P2与Kn联图.给出非连通图(P2∨Kn)∪St(m)和(P2∨Kn)∪Tn,并论证了当n≥2时,这两类图都是优美图.  相似文献   

14.
对k-优美图n,Km,n与任意一个有k-1条边的优美图Gk-1的优美关系进行了研究.证明了:当n为奇数时,图n∪Gk-1是优美图;当n为偶数时,粘接图〈n,Gk-1〉是优美图.还证明了粘接图〈Km,n,Gk-1〉是优美图.  相似文献   

15.
图C4∪St(m)的k优美性及算术性   总被引:1,自引:0,他引:1  
给出一类非连通图C4∪St(m). 论证当k>1(k∈N)时, 该图是k优美图; 当k>d+1(d>1, d∈N)时, 图C4∪St(m)是(k,d)算术图.  相似文献   

16.
给出了两类非连通图(K2〖TX-〗∨Cn)∪[DD(]3[]i=1[DD)]St(mi)和(K2〖TX-〗∨C2n+k)∪St(m)∪G(k)n-1(k=1,2), 并证明了如下结论:对自然数n, m, m1, m2, m3, 设s=〖JB([〗〖SX(〗n〖〗2〖SX)〗〖JB)]〗, n≥9, m1≥s+2, 则图(K2〖TX-〗∨Cn)∪[DD(]3[]i=1[DD)]St(mi)是一个优美图; 对 k=1,2,设n, m≥3, G(k)n-1是一个具有n-1条边的k-优美图,则图(K2〖TX-〗∨C2n+k)∪St(m)∪G(k)n-1是一个优美图。 其中,K2是一个具有2个顶点的完全图,K2〖TX-〗是图K2的补图,K2〖TX-〗∨Cn是图K2和n圈Cn的联图, St(m)是一个具有m+1个顶点的星形树。  相似文献   

17.
对自然数n,m,i∈N,设Ki表示i个顶点的完全图,■表示Kn的补图,St(m)表示m+1个顶点的星形树,Gr为有r条边的优美图,Pn为n个节点的路,P2∨■是P2与Kn联图。给出了非连通图(P2∨■)(r1,r2,0,…,0)∪St(m)及(P2∨■)(r1+a,r2,0,…,0)∪Gr的定义,并论证了当n≥2时,这两类图都是优美图。  相似文献   

18.
证明了 Seoud等当 k≥ 3时 C3 与 C2 k的不相交并 C3 ∪ C2 k为调和图的猜想 ,并扩展该结果 ,证明了 C5 ∪ C2 k( k≥ 2 )是调和图 ;给出猜想 C2 j+ 1 ∪ C2 k( j≥ 1,k≥ 2且 ( j,k)≠ ( 1,2 ) )是调和图 .证明了幂图 P4n( 8≤ n≤ 17)与 P5 n( 14≤ n≤ 17)是调和图 ,否定了 Seoud等关于当且仅当 1≤ k≤ 3时 Pkn( 1≤ k≤ n -1)是调和图的猜想 .给出了相反的猜想 :当 n≥ n0 ( k)时 Pkn是调和图 ( n0 ( k)为依赖于 k的足够大的整数 )  相似文献   

19.
讨论了 k优美图的性质 ,并利用平衡图 H及 k优美图 G给出了构造新的 k优美图—— G∪H及 G( X·∪ni=1 Yi)的方法 ,同时也讨论了图 Cn1 ,n2 ,… ,nt( t)的平衡性 .  相似文献   

20.
在k-优美图、k-GL矩阵(k为非负整数)的基础上,提出优美数和子段的概念,用子段计算的方法,证得了Kn(n≥5)非优美图,又证得Kn(n≥6)非1-优美图。并推出Kn的k-优美标号的性质及某些优美数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号