首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 625 毫秒
1.
针对四轮独立转向电动汽车转向系统成本高、但功能开发程度低的问题,提出一种车辆斜向行驶控制策略,优化四轮独立转向电动汽车换道过程中的行驶稳定性. 基于四轮独立转向电动汽车横向、纵向二自由度车辆模型,提出一种横纵向耦合轨迹跟踪控制方法,该方法基于线性时变模型采用模型预测控制(MPC)算法,对横向偏差、航向角偏差及纵向速度偏差进行闭环控制. 设计车辆稳定性控制器,包括横摆力矩控制器和转矩分配控制器,同时提高车辆轨迹跟踪精度和行驶稳定性. 最后搭建Simulink/Carsim/Prescan联合仿真平台,对四轮独立转向电动汽车双移线工况进行模拟换道仿真,仿真结果证明了斜向变道的可行性和横纵向耦合轨迹跟踪控制方法的有效性.   相似文献   

2.
为提高自动驾驶车辆的路径跟踪精度,针对自动驾驶车辆横纵向耦合控制问题,提出了带有前馈控制的PID+LQR联合控制策略。首先,利用二自由度车辆动力学构建路径跟踪误差数学模型,制定横纵向控制流程。随后,设计了用于横向控制的LQR控制器和用于纵向控制的PID控制器,将横纵向控制器进行整合,使得车辆在接收到决策规划系统给出的期望指令后可以进行跟踪行驶。借助CarSim和MATLAB/Simulink联合仿真平台,在连续工况下对该控制策略进行测试。结果表明,提出的横纵向耦合运动控制策略可以控制车辆沿着规划的轨迹行驶,且可将跟踪误差控制在较小的范围内。  相似文献   

3.
为提升自动驾驶汽车在自适应巡航跟车和车道切换联合工况下的纵向跟驰、横向稳定性能,针对加速跟随前车且同时换道这一特殊工况下的车辆行驶稳定性控制需求,提出了一种具有两层结构的协同控制策略.在分析跟车和换道联合工况控制需求基础上,建立了基于五次多项式的换道轨迹模型和固定车头时距跟车模型,设计了上层线性时变模型预测控制器,输出...  相似文献   

4.
针对传统轨迹跟踪控制方法应用场景局限,精度不高的问题,为实现车辆横纵向联合控制从而提升无人驾驶汽车在结构化场景下的轨迹跟踪效果,本文建立了自然坐标系下的车辆跟踪误差模型,设计基于LQR与PID相结合的车辆横纵向耦合控制器。在横向控制层面,为消除系统稳定误差,通过引入前馈控制量实现系统的整体稳定,减小车辆在实际运行过程中产生的横向误差,提升控制过程的稳定性;在纵向控制层面,运用PID控制策略进行调节,实现车辆的实际速度与规划速度,实际位置与规划位置之间的精确匹配。通过MATLAB/Simulink与Carsim搭建联合仿真平台,针对日常泊车、驶入主路以及超车多种工况进行仿真验证。仿真结果表明:本文所设计的横纵向联合控制器将车辆的轨迹跟踪误差控制在可接受范围之内的同时,轨迹跟踪效果满足乘客对车辆乘坐舒适性的要求,故本文设计的控制器具备一定的稳定性和准确性。  相似文献   

5.
为提升智能车辆循迹性能,本文提出了一种基于LQR理论和滑模理论的车辆横纵向控制器。首先,基于二自由度横向动力学模型,构建前馈LQR控制器。针对循迹过程中横纵向跟踪精度与转向稳定性两者难以兼顾的问题,本文基于 CTRV模型设计预测控制器,建立了基于实时车速-曲率的模糊自适应预测时间,对前馈LQR进行改进。此外为提升纵向车速跟踪稳定性和跟踪精度,本文提出一种基于滑模控制理论的纵向跟踪算法。通过CarSim与Simulink的联合仿真和硬件在环平台进行验证,结果证明:本文提出的横纵向控制器具备一定的驾驶员行为特征,可兼顾跟踪精度与稳定性,提升了智能车辆循迹性能。  相似文献   

6.
为了提高智能驾驶汽车跟踪控制器的稳定性和跟踪精度,提出了一种基于线性二次型调节器(LQR)控制算法和驾驶员预瞄模型的横向跟踪控制策略,结合纵向比例-积分-微分(PID)控制算法实现横纵向控制。首先建立带有前馈的LQR控制器,采用梯度下降优化算法优化LQR控制器权重参数,并在此基础上引入驾驶员预瞄模型,设计了基于经验的预瞄距离自适应控制器;其次建立双PID纵向控制器进行速度控制。最后通过Carsim和Matlab/Simulink联合仿真以及实车测试验证,结果表明:仿真工况下最大横向偏差小于0.035 m,最大航向偏差小于0.09 rad,实车测试工况下也能够良好遵循规划轨迹的整体趋势,速度跟踪效果良好且前轮转角与横摆角速度变化平稳。因此,该控制器能够保证较高精度且平稳的轨迹跟踪,在高速状态下更为明显。  相似文献   

7.
智能车辆轨迹跟踪控制方法研究   总被引:1,自引:0,他引:1  
针对智能车辆的轨迹跟踪控制问题,提出了一种可以调节参数的智能车辆轨迹跟踪控制方法.首先,设计了模糊控制器对智能车辆进行路径跟踪控制;其次,为了提高车辆在高速下的路径跟踪效果,设计模型预测控制器,并结合轮胎的动力学特性及车辆动态特性对轮胎侧偏角、质心侧偏角等进行约束;然后,为了提高车辆在不同工况下的路径跟踪效果,进一步设计了基于PSO算法的模型预测控制器.比较三种控制器的控制效果,选择典型工况在联合仿真平台上进行仿真.结果表明,提出的智能车辆的轨迹跟踪控制方法可以有效地对车辆轨迹进行跟踪.  相似文献   

8.
极限工况下,车辆纵向侧向运动存在严重的耦合,传统的纵向或侧向主动安全控制技术难以保证车辆的操纵性能。基于复合滑移LuGre轮胎模型,提出了一种车辆横纵耦合协同优化控制器。建立了车辆侧向动力学模型,它能够反映出轮胎滑移率和侧偏角耦合特性对汽车侧向力的影响。然后,在预测控制框架下,设计车辆横纵耦合协同优化控制器,跟踪期望的横摆角速度和侧向速度,抑制滑移率,保证低附着路面下的车辆操纵稳定性。通过CarSim和MATLAB/Simulink的联合仿真,与基于纯侧偏轮胎模型的控制器控制性能进行对比,结果表明:所提出的控制器能够通过更少的输出扭矩更好地跟踪期望横摆角速度,抑制侧向速度,降低滑移率。  相似文献   

9.
为了提高模型预测控制(model predictive control, MPC)方法在高速无人驾驶汽车横向跟踪中的有效稳定控制,建立考虑横摆、侧滑和曲率等因素的高速车辆动力学模型,提出基于三次贝塞尔曲线的连续自适应分段拟合法以获取道路曲率,然后设计考虑车辆滑移稳定性约束、道路环境约束和轮胎纵横向耦合力约束,以车辆高速跟踪过程中的航向偏差、横向偏差以及滑移率等二次型最优为目标进行求解的MPC控制器。仿真案例基于MPC方法,搭建CarSim/SimuLink联合仿真模型,研究高附着路面恒定高速和低附着路面变速2种仿真工况。研究结果表明:车辆在恒定高速工况下以不同的车速在不同曲率的道路行驶时横向跟踪误差在0.6 m以内,优化的前轮转向角最大值为0.1 rad,横摆角速度-横向速度相平面也在包络线之内,车辆在大曲率路径跟踪时,平均横向跟踪误差0.221 9 m,平均横摆角速度为0.180 8 rad/s,较不考虑道路曲率/滑移稳定性约束的跟踪效果显著提升;低附着路面小曲率/大曲率路径变速工况下,车辆考虑轮胎耦合力的前轮转向角约束较未考虑时的横向跟踪误差显著减小(其中低附着路面小曲率路径工况的...  相似文献   

10.
现代无轨列车是一种新型公路运输车辆,其融合了汽运车辆建设成本低和轨道车辆载运量大的技术优势.针对多铰接现代无轨列车车体编组多,运动自由度大,曲线路径行驶时后方车辆会偏离前方车辆的运动轨迹的问题,建立了跟随误差模型,分析影响路径跟随性的因素,提出一种曲线路径行驶的路径跟随策略.采用航向角预测跟随控制策略,设计中间车轴的铰接角和后车轴的转向角控制规律,以增量PID算法补偿阿克曼转向模型误差,提高系统稳定性.最后在圆曲线路径和"S"曲线路径工况下测试车辆各轴的行驶轨迹.仿真结果表明:车辆的位置跟踪误差保持在0.03 m以内,航向跟踪误差最大在4.5°以内,车辆具有较好的路径跟随性能.  相似文献   

11.
四驱混合动力轿车转弯工况路径跟踪控制   总被引:2,自引:1,他引:1  
针对四驱混合动力轿车,提出一种转弯工况下集成横向与纵向运动控制功能的路径跟踪控制策略.在建立车辆动力学与动力系统模型的基础上,设计了基于轨迹跟踪误差的驾驶员预瞄转向模型;采用模糊控制器确定了期望车速,对转矩分配问题进行优化研究;设计了车速与轨迹跟踪模型预测控制器;搭建了CarSim与MATLAB/Simulink联合仿真模型与自动驾驶模拟驾驶器,对控制策略进行了离线仿真和硬件在环仿真试验.研究结果表明,车辆转弯过程中路径及车速跟踪效果良好,满足转弯工况路径跟踪需求.  相似文献   

12.
针对变化速度下车辆轨迹跟踪精度以及实时性差的问题,提出一种基于模型预测控制的横纵耦合控制方法。在三自由度车辆动力学模型中,将车轮驱动力与前轮转角作为控制量,以单控制器形式实现车辆横纵向运动的综合控制,并且在考虑耦合特性的基础上,设计目标函数与可变权重系数,求解最优横纵向控制量。并且基于五次多项式理论,设计一种变速双移线轨迹以验证控制器综合轨迹跟踪能力。实验结果表明,该控制器能有效跟踪变化车速并且保持高轨迹跟踪精度与良好的实时性。  相似文献   

13.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

14.
针对汽车纵横向运动中的耦合现象,以四轮驱动、前轮转向的智能汽车为研究对象,建立汽车纵横向动力学模型并通过Interactor算法对模型的可逆性进行分析.在已有的传统伪线性系统结构的基础上,根据智能汽车的特点,建立了可对接智能汽车上层规划模块的伪线性系统.为了实现汽车纵横向运动之间的解耦,采用基于神经网络逆系统的解耦控制策略,构造神经网络并对其进行训练,并将神经网络逆系统与内模控制器组成闭环控制回路,对纵向速度和横摆角速度进行内模反馈调节,进一步提升控制系统的性能.仿真结果表明,所设计的基于神经网络逆系统的控制方法能实现良好的解耦特性,且相比于其他的控制方法,在各种输入条件下,都能实现对于期望速度和期望横摆角速度良好的跟踪性能,同时,质心侧偏角始终被控制在一个较小的范围内,这有利于智能汽车路径跟踪的精确性和行驶稳定性.  相似文献   

15.
紧急避让路径跟踪自抗扰控制   总被引:1,自引:1,他引:0  
自动紧急避让作为一种辅助驾驶系统,能够提高汽车行驶的安全性.为了提高不同质量参数、不同轴距车辆路径跟踪性能,以二自由度车辆模型为基础,设计二阶自抗扰控制器.车辆模型参数变化可以通过三阶扩张状态观测器进行观测和补偿.针对避让过程存在侧向加速度过大或产生阶跃、曲率不连续问题,引入三次B样条曲线对避让路径进行再规划.采用软件Carsim与Simulink联合仿真方法进行控制器性能验证.仿真结果表明,基于自抗扰方法设计的紧急避让路径跟踪控制器能够保证不同车型车辆很好地跟踪规划的轨迹,保证车辆稳定性.  相似文献   

16.
为合理分配智能汽车人机协同共驾驾驶权,提高智能车辆的驾乘安全性和舒适性,本文提出驾驶人纵侧向驾驶能力的概念及其评价方法.对驾驶人的驾驶能力进行了定义和分析,并在此基础上设计了纵向跟车激励工况和侧向移动双移线激励工况,在搭建的驾驶人在环智能仿真平台上进行数据采集.建立了基于Hammerstein辨识过程的驾驶能力辨识模型,采用主成分分析法对驾驶能力辨识模型中的关键参数进行解耦和降维处理;通过客观蚁群聚类和主观量表分析相结合的分类方式,实现驾驶能力的分类;通过多元线性回归分析得到驾驶能力评价方程.结果表明,纵侧向驾驶能力辨识模型平均辨识及拟合精度均大于90%,经主成分分析及主客观分类处理后的纵侧向驾驶能力评价方程满足统计检验指标,具有良好的拟合及预测结果.   相似文献   

17.
针对线控四轮主动转向车辆受侧向干扰和变道行驶时存在的操纵稳定性问题,基于单点预瞄驾驶员模型、三自由度整车动力学模型和改进型滑模四轮转向(4WS)控制算法,建立了4WS整车驾驶系统,并设计了双移线行驶工况对其进行实验测试.在Matlab/Simulink软件中对该整车驾驶系统进行建模仿真,并与相同参数的经典型滑模控制的4WS车辆和无控制前轮转向(FWS)车辆模型仿真结果对比.结果表明:设计的改进型滑模控制器可以有效地实现双移线行驶工况,追踪理想横摆角速度,使质心侧偏角、车身侧倾角和侧倾角速度保持一个相对较小的值,并且对侧向干扰具有很强的鲁棒性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号