首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
介绍了一种基于神经网络的永磁同步电机矢量控制系统的广义预测控制方法.通过分析永磁同步电机数学模型,采用带有延时结构的多层前向神经网络作为预测模型,进行非线性广义预测控制.控制算法是基于非线性激励函数的局部线性思想,将预测模型处理成线性和非线性两部分,并用线性预测控制方法求得控制律,简化了计算.仿真结果表明,利用该法建立的永磁同步电机调速系统,具有良好的控制效果.  相似文献   

2.
为了提高非线性预测控制中预测模型的精度,提出一种基于递归神经网络建模的预测控制方案.采用改进Elman神经网络在线建立预测模型,用递推最小二乘法在线修改神经网络权值,并引入误差补偿环节,从而达到改善预测模型精度的目的,使控制系统的控制性能得到提高.仿真实验表明了该方法的有效性.  相似文献   

3.
对神经网络和模糊理论在水下机器人运动控制中的应用进行了探讨,提出了神经网络多步预测模型的非线性广义模糊预测控制算法,用神经网络方法实现了对水下机器人这一非线性系统的在线计算、滚动优化和在线控制,采用强化学习方法来构筑模糊控制系统中的神经网络,给出了神经网络多步预测模型及相应的控制算法和操作过程,计算机仿真结果验证了本文所提方法的有效性。  相似文献   

4.
船舶航向的神经网络二阶导数多步预测模糊自适应控制   总被引:1,自引:0,他引:1  
针对大型船舶控制特性,设计了船舶航向的神经网络二阶导数多步预测模型及其辨识和预测算法,提出基于径向基函数神经网络多步预测模型和模糊小脑模型关节神经网络控制器的大时滞船舶航向模糊控制自动舵方案,解决传统自适应控制中模型的在线辨识和控制器的在线设计问题,以达到对具有大时滞、不确定非线性特性的大型船舶实现高精度输出跟踪控制.仿真结果表明对设定航向具有精确的跟踪控制效果.  相似文献   

5.
为对海杂波进行准确预测,根据海杂波具有的非线性不确定性,应用线性和非线性预测理论建立预测模型.针对logistic混沌映射信号和IPIX实际海杂波数据背景下的弱目标,分别采取基于自回归(AR)的线性模型、基于径向基神经网络(RBF)和Volterra级数滤波器的非线性模型进行预测.实验结果表明:非线性预测模型更适合于混沌背景下,因其目标和杂波的预测误差相差较大,可采取非线性预测并设置门限的方法进行目标检测;对于IPIX雷达数据,其混沌特性较logistic弱,目标和杂波的预测结果相差不大,可采用似然比检测方法.  相似文献   

6.
提出了非线性预测函数控制器以解决风筝发电的控制难题,采用混合神经网络建立了风筝系统的预测模型,采用预测函数设计其控制器.预测函数控制器结合神经网络集成了在线辨识、学习机制和预测控制器闭环控制系统,能够显著改善风筝发电系统的性能.数字仿真结果验证了该方法的有效性.  相似文献   

7.
基于神经网络模型的扩展优化自校正预测控制   总被引:1,自引:0,他引:1  
利用前馈神经网络权初值优化的快速BP算法建立对象的非线性预测模型,采用分段线性化的技术建立动态线性模型,基于该线性模型进行滚动优化,同时用非线性预测模型对其进行补偿,实现对具有时延的非线性系统的预测控制,较好地解决了非线性系统存在时变、模型失配等情况下的控制问题。仿真实验表明由它构成的控制系统具有很好的动态响应和较强的鲁棒性。  相似文献   

8.
非线性过程的建模和控制问题尚无通用的模型结构和方法可用于过程控制.结合小波和神经网络方法进行过程控制的通用模型和方法的研究,提出了一种仅用尺度函数逼近的小波神经网络模型,并用它来实现非线性预测控制方案.该模型能用线性最小二乘方法进行拟合,因而具有易于实现和通用的优点.由于简化了在线优化方法,所提出的非线性预测控制方案已在线实现.用该方法进行了两个非线性系统的模型辨识和一个双线性系统的控制仿真,模型的通用性、辨识和控制方法的简单易用和仿真结果表明,所提出的方案对过程工业和非线性、高阶系统有很好的实用性,有着比标准PID控制器好得多的控制效果.  相似文献   

9.
影响股票价格变动的因素有很多,且股票数据具有高度的非线性和时变性等特征,因而采用经典线性时间序列模型可能无法完全提取非线性部分的信息.针对这一问题,建立了BP神经网络模型、PCA-BP神经网络模型、GA-BP神经网络模型和ARIMA(6,1,6)模型对上证综合指数的收盘价格进行预测.计算各预测模型下的统计指标RMSE和MAE,并对4个模型进行对比分析.结果表明,GA-BP神经网络预测模型与其它三种模型相比具有更小的误差,也就是说GA-BP神经网络预测模型对上证综合指数的收盘价格预测效果更好.  相似文献   

10.
对难以建模的多变量非线性系统的控制难题,提出改进的具有辅助向量的多变量全格式动态线性化方法,采用其逼近非线性系统,用其构成预测模型,将其转化为具有耦合的若干个子系统,利用直接极小化指标函数自适应优化算法辨识其参数,将多变量线性扩张观测器的线性控制输入项改进为关于观测状态和控制输入向量及其微分的向量函数,并由该向量函数的逆向量函数构建当前控制输入向量,因其未知,使用对角回归神经网络逼近控制输入向量函数,采用多变量非线性递推最小二乘法优化对角回归神经网络连接权及多变量线性自抗扰控制参数,综上研究提出在线优化参数的多变量无模型预测神经网络线性自抗扰控制算法。仿真研究表明系统响应精度高,性能好,优于传统的线性自抗扰控制算法。  相似文献   

11.
基于人工神经元网络模型的预测控制研究   总被引:1,自引:1,他引:1  
研究了基于人工神经元网络模型的非线性预测控制,所采用的网络为一种将线性模型与多层前向网络相结合的DLF网络,仿真结果表明,该“混合网络”易训练,收敛速度可大大加快,在DLF模型的基础上,本文研究了一种非线性预测控制算法,它的显著特点是在线计算量小。对于一非线性过程-球形罐液位的仿真结果表明,基于DLF的非线性预测控制效果颇佳。  相似文献   

12.
利用RBF神经网络在训练算法和广义预测控制算法进行了Wiener型非线性模型预测控制的研究,仿真表明这种做法是可行的。  相似文献   

13.
为了改善具有非线性特性的发动机燃油控制效果,以达到高效率、低污染的要求。利用一种前向神经网络作为非线性系统的模型,并将其分为线性部分和非线性部分。其中非线性部分用单隐层的BP神经网络对其建模,采用学习速度较快的Davidon最小二乘法在线调整网络权值;线性部分采用受控自回归积分滑动平均(CARIMA)模型作为其数学模型,用递推最小二乘法(RLS)作为其参数辨识的方法。每步将所得非线性系统的网络模型线性展开,得到线性回归模型,并以非线性前馈增益方式补偿建模误差,建立了一种适合非线性系统的自校正广义预测控制器。仿真结果表明该算法收敛速度快,控制动作平稳,控制效果理想。  相似文献   

14.
提出了一种基于分层优化策略和动态最优控制解法的非线性系统预测控制算法,该方法大大减小了在线计算量,使实时控制成为可能.给出了详尽的理论推导,以一个仿真算例证明了算法的正确、可行与有效性.  相似文献   

15.
针对一般离散非线性系统,将模糊系统对非线性系统的逼近能力与预测控制算法相结合,提出一种基于模糊系统逼近的双模预测控制算法·在吸引域外,以模糊系统为预测模型计算控制量,并施加于实际系统;在吸引域内,切换至一个渐进稳定的线性控制器·在满足一定条件下,给出预测模型与非线性系统性能指标间的关系,分析了闭环系统的稳定性·最后以一个仿真例子说明了算法的有效性·  相似文献   

16.
为了满足永磁同步电动机伺服系统的高精度应用需求,提出了一种基于多工作点模型的鲁棒控制器设计方法。该方法首先进行标称控制器设计,利用反馈线性化将电机模型变换为含有等价干扰的线性模型,并设计线性控制律,让标称控制系统跟踪参考输出信号,然后设计鲁棒补偿器,抑制等价干扰的影响,最后利用不同工作点的设计结果,确定最终鲁棒控制器参数。理论证明了该文闭环控制系统的鲁棒稳定性和鲁棒跟踪特性。实验结果表明所设计的鲁棒伺服控制系统在不同工作点下均具有期望的鲁棒转速跟踪特性和扰动抑制特性。  相似文献   

17.
采用输入-状态线性化方法控制永磁同步电动机系统中出现的混沌现象,利用输入-状态可线性化的能控条件和对合条件对施加控制的混沌系统进行判断,当满足线性化条件时,运用微分几何中的Lie导数和Lie括号运算将非线性系统模型转化为线性模型,然后对线性化后的系统设计控制器,使系统的三个状态变量均稳定的收敛于零,从而消除了混沌,仿真结果证明了该方法的有效性。  相似文献   

18.
在电机参数发生扰动的永磁同步电机控制系统中,为提高无差拍预测控制性能,需要对电机参数扰动进行补偿. 文中利用永磁同步电机数学模型分析了参数扰动对无差拍预测控制的影响;针对定子电感和定子电阻的扰动设计了自回归模型,利用前若干控制周期的参数扰动量估计出当前控制周期的扰动量;将估计的参数扰动量补偿到无差拍预测控制的输入端,实现对永磁同步电机的控制. 仿真和实验结果表明提出的自回归模型参数扰动估计方法能够有效抑制永磁同步电机定子电阻和定子电感的扰动.   相似文献   

19.
研究了一种利用RBF神经网络预测模型的动态矩阵控制算法,首先利用动态节点生成构造性RBF神经网络辨识对象模型,同时预测对象的未来输出,然后用传统的动态矩阵控制算法进行滚动优化和反馈校正。仿真表明该算法在非线性对象的任意工作点都可以通过神经网络辨识获得工作点附近的近似线性模型,具有较好的实时性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号