首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
以3,3′,4,4′-二苯酮四甲酸二酐(BTDA)和4,4′-二氨基二苯醚(ODA)为缩聚单体,利用高压静电纺丝技术制备出纳米Al_2O_3/PAA(聚酰胺酸)复合薄膜.以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为原料制备出聚酰胺酸铺膜胶液,在电纺膜的两侧进行流延成膜,并热亚胺化处理.对复合薄膜进行化学组成、微观形貌、耐电晕性能、力学性能和热学性能测试分析.结果表明:复合薄膜的亚胺化较完全,纳米Al_2O_3均匀地分散在聚酰亚胺基体中,在纳米氧化铝掺杂量为6%时综合性能最佳,耐电晕老化时间为12.3 h,是未掺杂纳米氧化铝三层复合薄膜的3倍以上,拉伸强度达到最大值(174 MPa),同时断裂伸长率达到21%.纳米Al_2O_3的加入使得复合薄膜的热稳定性有所提高,起始热分解温度从578.7℃提高到591.3℃.  相似文献   

2.
首先将3-氨丙基三乙氧基硅烷接枝到纳米二氧化硅表面,制得表面含有氨基的改性纳米二氧化硅粒子(A—SiO2)。再将A—SiO2按不同比例与酐封端的聚酰胺酸进行反应,最后经热酰胺化过程,得到一系列聚酰亚胺/二氧化硅杂化膜。采用红外光谱(FT-IR)、X-射线衍射(XRD)、紫外光谱(UV-vis)、热重分析(TGA)、动态机械热分析仪和扫描电镜(SEM)对合成的聚酰亚胺及其二氧化硅杂化薄膜进行了表征。UV-vis光谱表明,通过向聚酰亚胺薄膜中添加A—SiO2可以改变聚酰亚胺薄膜的透光性。TGA测试结果表明,随着A—SiO2含量的增加,聚酰亚胺/二氧化硅杂化薄膜的热稳定性有所提高。由机械性能测试可知,当A—SiO2掺杂量小于1.5%时,聚酰亚胺/二氧化硅杂化膜的机械性能优于纯聚酰亚胺的机械性能,当A—SiO2的掺杂量大于2.0%时,聚酰亚胺/二氧化硅杂化膜的机械性能比纯聚酰亚胺的机械性能差。SEM分析可知当A—SiO2粒子含量小于1.5%时,其在聚酰亚胺基体中分散均匀,当含量大于2.0%时,体系出现明显团聚现象。  相似文献   

3.
以3-氯代苯酐和间苯二酚为初始原料,合成了3,3'-(间苯)二醚二酐(3,3'-Rs DPA).将其与3,3',4,4'-联苯四甲酸二酐(BPDA)以不同比例和4,4'-二氨基二苯醚(4,4'-ODA)发生缩聚反应,以邻苯二甲酸酐(PA)为封端剂,经化学亚胺化后,制备了一系列特性粘度控制在0.47~0.48 d L·g~(-1)的热塑性聚酰亚胺(TPI)模塑粉.采用傅里叶变换红外光谱(FT-IR)、热失重分析(TGA)、差式扫描量热仪(DSC)以及X-射线衍射(XRD)对聚酰亚胺模塑粉的结构和性能进行表征,同时考察了样品的机械性能.研究发现:当3,3'-Rs DPA与BPDA的摩尔比为6∶4时,共聚聚酰亚胺的性能较好,玻璃化转变温度(Tg)为252℃,熔融温度(Tm)为327℃,5%热失重温度(Td5%)为553℃,拉伸强度高达124 MPa,弯曲强度为175 MPa,XRD也表明该聚酰亚胺具有一定的结晶行为良好的耐热性、优异的机械性能及良好的加工性能使该聚酰亚胺材料可用于3D打印技术中.  相似文献   

4.
首先将3-氨丙基三乙氧基硅烷与凹凸棒土进行反应,得到氨基改性的凹凸棒土(A-ATT),再将A-ATT按不同比例与酐封端的聚酰胺酸进行反应,最后经热酰胺化过程,得到一系列聚酰亚胺/凹凸棒土复合薄膜。采用红外光谱(FT-IR)、动态光散射(DLS)、紫外光谱(UV-vis)、热重分析(TGA)、和动态机械热分析仪(DMTA)对合成的改性凹凸棒土和聚酰亚胺/凹凸棒土复合薄膜进行了表征。UV-vis光谱表明,通过向聚酰亚胺薄膜中添加A-ATT可以改变聚酰亚胺薄膜的透光性。TGA测试结果表明,随着A-ATT含量的增加,聚酰亚胺/凹凸棒土复合薄膜的热稳定性有所提高。由机械性能测试可知,当加入少量A-ATT时,聚酰亚胺/凹凸棒土复合薄膜的杨氏模量和拉伸性能有所提高,当A-ATT含量大于2.0%时,聚酰亚胺/凹凸棒土复合薄膜的机械性能有所下降。  相似文献   

5.
双酮酐型聚酰亚胺(PI)具有优异的耐热性能及力学性能,制备此类型聚酰亚胺的重要单体之一是多烷基化合物.通过低温Friedel-Crafts酰基化反应制备1,4-二(3',4'-二甲基苯甲酰基)苯、1,3-二(3',4'-二甲基苯甲酰基)苯、4,4'-二(3',4'-二甲基苯甲酰基)二苯醚、4,4'-二(3',4'-二甲基苯甲酰基)联苯4种四甲基二甲酰型芳环化合物,并且分别对4种化合物的结构进行了红外和核磁分析.结果表明:所得4种化合物与目标产物一致,有望拓展双酮型二酐的种类,进而合成性能更佳的新型双酮酐型聚酰亚胺.  相似文献   

6.
为改善聚酰亚胺薄膜的透明性和溶解性,通过Williamson醚化反应较高产率地合成出高纯度的2,2-双[4-(4-氨基-2-三氟甲基苯氧基)苯基]丙烷,该含氟二胺与3,3’,4,4’-联苯四酸二酐(BPDA)在溶剂中缩聚得到聚酰胺酸,热亚胺化得到玻璃化转变温度Tg为350.2℃、在氮气中10%热失重温度为539.8℃、紫外截止波长为390 nm的含氟透明聚酰亚胺,并合成了联苯二酐/二苯醚二胺薄膜BPDA-ODA,通过对两种薄膜热稳定性、透光率、溶解性能的比较发现,在聚酰亚胺分子结构中引入氟原子,在不改变其热稳定性的前提下,可明显改善聚酰亚胺的透明性和溶解性。  相似文献   

7.
以3,3′,4,4′-二苯酮四酸二酐(BTDA)作为二酐单体,与2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4-苯基-2,6-双(4-氨基苯基)吡啶(PBAP)通过常规的两步法,合成了可溶性共聚聚酰亚胺.利用IR、1H NMR、XRD、粘度测试、溶解性测试和TGA等手段对聚合物的结构和性能进行了研究.结果表明,所得聚酰亚胺的结晶度较低,PAA特性粘数为0.32~0.46dL/g,溶解性较好,并有着优良的热稳定性.  相似文献   

8.
三元共聚型聚酰亚胺的合成   总被引:1,自引:0,他引:1  
提出了一种合成三元共聚型聚酰亚胺的方法,即用单体,均苯四甲酸二酐(PMDA)、3,3′,4,4′-二苯酮四甲酸二酐(mA)、4,4′-二氨基二苯醚(0DA),在溶剂N,N′-二甲基乙酰胺(DMAc)或N-甲基吡咯烷酮中,低温共缩聚制成三元共聚型聚酰亚胺,给出了合成工艺条件及配方,并对其性能等进行了测试,与其他聚酰亚胺进行了比较.该产品可用于制造耐高温绝缘薄膜、浸渍漆等.  相似文献   

9.
以均苯四甲酸二酐(均酐),3,3',4,4'-二苯酮四羧酸二酐(酮酐)和芳香二胺单体3,5-二氨基-4'-甲基-二苯基醚为初始原料,通过改变均酐与酮酐物质的量的比例,通过低温缩聚和热亚胺化合成一系列高分子量的聚酰亚胺,并用红外光谱、XRD图谱、元素分析等手段表征其结构,该系列聚合物在强极性溶剂中具有较好的溶解性,而且在较宽的光谱范围内具有良好的透明性,力学性能测试表明这些聚酰亚胺薄膜具有较好的力学性能,而且拉伸强度、弹性模量随着均酐组分含量的增加而明显提高。  相似文献   

10.
以3,5-二氨基苯甲酸(DABA)和可提高溶解性能的六氟二酐(6FDA)作为单体,通过分子结构设计在主链上接枝光敏基团,合成可低温紫外光固化的光敏性聚酰亚胺(PSPI)。探究光敏性聚酰亚胺的基本性能,确定含氟聚酰亚胺树脂的光固化工艺参数,并分析不同配方下薄膜的机械性能和热性能。研究结果表明,以35%(质量分数)的PSPI作为预聚体,20%(质量分数)的丙烯酸羟乙酯(HEA)作为活性稀释剂合成的聚酰亚胺薄膜拉伸强度最高可达(60.71±0.68) MPa,硬度最高可达到(143.5±1.34) MPa,断裂伸长率为(2.83±1.05)%,弹性模量为(3.13±0.21) GPa,薄膜刚性明显提升,同时,在质量损失5%(Td5)和10%(Td10)时的温度分别为140℃和216℃。  相似文献   

11.
以3-氯代邻苯二甲酸酐和间苯二酚为初始原料,研究了反应时间、反应温度对合成3,3'-(间苯)二醚二酐(3,3'-Rs DPA)单体的影响.以邻苯二甲酸酐(PA)为封端剂,将合成的3,3'-Rs DPA与1,4-双(4-氨基苯氧基)苯(TPEQ)、1,3-二氨基苯(MPD)、4,4'-二氨基二苯醚(4,4'-ODA)和1,4-二氨基苯(PDA)发生缩聚反应,经化学亚胺化制备了一系列聚酰亚胺(PI)模塑粉,并对聚酰亚胺的热性能、力学性能进行了表征.结果表明:合成的聚酰亚胺具有良好的热稳定性,其质量损失5%的热分解温度在空气中为525~531℃,在氮气中为526~538℃;玻璃化转变温度(Tg)随着二胺单体刚性的增加从218℃升高到261℃.当二胺单体为PDA时,PI(3,3'-Rs DPA-PDA)具有明显的熔融结晶行为,其熔融温度(Tm)为327℃.良好的耐热性及优异的可加工性能使该聚酰亚胺材料有望用于3D打印技术中.  相似文献   

12.
聚酰亚胺由二酐和二胺反应制成,具有良好机械性能和热稳定性,应用于保护涂层、薄膜、高温结构材料和胶结剂等方面。美帝拉汉特洲立大学试制出三种在500~600℃稳定的新聚酰胺,分别用2,3,6,7—蒽醌四羧酸二酐和2,6—二氨基蒽醌;2,3,6,7—蒽醌四羧酸二酐和间苯二胺;1,8,4,5—萘四羧酸二酐和2,6—二氨基蒽醌合成。据称,这些聚酰亚胺(粉末状)在空气中450℃以下或在氦中550℃以下时不会有显著失  相似文献   

13.
本研究以N,N′-(2,2′-双(三氟甲基)联苯-4,4′-二基)双(1,3-二氧代-1,3-二氢异苯并呋喃-5-甲酰胺)(TATFMB)和4,4′-二氨基-2,2′-双(三氟甲基)联苯(TFMB)为单体制备聚酰胺酸(PAA)溶液,加入八(氨基苯基三氧硅烷)(OAPS)作为交联剂,通过热亚胺化得到了透明聚酰亚胺薄膜.差示扫描量热法(DSC)、动态热机械分析(DMA)和热失重分析(TGA)测定表明,多面体聚硅氧烷(POSS)结构的引入提升了材料的耐热性与热稳定性,同时赋予材料形状记忆性能.相比于以往报道的形状记忆聚酰亚胺,TATFMB/TFMB/OAPS聚酰亚胺薄膜具有高的玻璃化转变温度(tg).该薄膜具有良好的透明性(400~800nm平均光透过率92%,500nm处透过率91%).热机械分析(TMA)测试的结果表明,二酐单体TATFMB的引入使得聚合物具有较低的热膨胀系数(CTE).所制备的透明耐高温聚酰亚胺薄膜拓展了聚酰亚胺材料在光电显示器件与高温形状记忆材料领域的应用.  相似文献   

14.
超声分散法制备聚酰亚胺/碳纳米管复合材料   总被引:1,自引:0,他引:1  
以3,3′4,4′-二苯甲酮四羧酸二酐(BTDA)及4, 4′-二氨基二苯基醚(ODA)为基本原料, 采用超声分散法,掺入碳纳米管,制备了聚酰亚胺/碳纳米管复合材料. 在不同超声时间、不同超声频率下对纳米粒子进行了分散研究,并对聚酰亚胺/碳纳米管复合材料结构表征,从力学性能,导电性能等方面进行了研究. 研究表明:超声频率325 Hz,超声时间90 min时,碳纳米管在聚酰亚胺膜中得到很好分散,聚酰亚胺/碳纳米管复合材料的力学性能和导电性能优于聚酰亚胺膜.  相似文献   

15.
为了提高聚酰亚胺的热塑性,制备兼具优异热塑性与耐热性的聚酰亚胺材料,以均苯四甲酸二酐(PMDA)与3,3′,4,4′-联苯四羧酸二酐(s-BPDA)为二酐、4,4′-二氨基二苯醚(ODA)与2,2′-二[4-(4-氨基苯氧基)苯基]丙烷(BAPP)为二胺,通过两步法成功制备了一系列四元共聚热塑性聚酰亚胺,并研究了刚性联苯基团与柔性单体、侧甲基的协同作用对聚酰亚胺材料性能的影响。利用FTIR、XRD、DMA和TGA等测试手段对材料的分子结构、热塑性和耐热性等进行了表征。结果表明:该系列四元共聚聚酰亚胺具有良好的热塑性与耐热性,其中当二酐与二胺的摩尔分数比(PMDA∶s-BPDA∶ODA∶BAPP)为70∶30∶70∶30时,该材料表现出优异的热塑性和耐热性,同时在非质子极性溶剂中表现出较好的溶解性,极大地提高了聚酰亚胺在溶剂或熔融状态下的加工性能。  相似文献   

16.
合成具有独特结构的三蝶烯-2,3,6,7-四甲酸二酐,利用低温溶液缩聚-化学酰亚胺化法,分别与4,4'-二氨基二苯甲烷(DMA)、4,4’-二氨基二苯醚(ODA)合成两种结构新颖的聚酰亚胺.利用傅里叶变换红外光谱(FT-IR)、热失重分析(TGA)与示差扫描量热法(DSC)等手段对聚酰亚胺进行表征,研究其溶解性能、特性...  相似文献   

17.
采用溶胶-凝胶法和二氧化硅粒子掺杂共混法分别制备了聚酰亚胺/SiO2杂化膜和纳米复合膜.采用红外分光光度计(FTIR)、热重分析仪(TGA)和透射电镜(TEM)表征了所制备膜的结构微观形态和热性能并进行分析对比,结果表明在杂化膜中SiO2在聚酰亚胺基体中可以形成分子级分散,复合膜表现出较强的吸湿性使其热分解温度较低.研究认为,采用溶胶-凝胶法制备聚酰亚胺/SiO2介电材料更为合理.  相似文献   

18.
壳聚糖/纳米SiOx复合膜的制备及机械性能   总被引:3,自引:0,他引:3  
采用二次回归旋转正交试验方法,探讨了制备壳聚糖/纳米SiOx复合膜的优化工艺条件,用流延法制得分散比较均匀的纳米复合膜,并对涂膜结构进行红外光谱(IR)、X射线衍射(XRD)及透射电镜(TEM)表征.结果表明:复合膜(CTS-SiOx)中壳聚糖与SiOx粒子表面的大量羟基存在强烈的氢键作用;当配料为壳聚糖1.98 g、SiOx 0.017 g、单甘酯0.04 g时,壳聚糖复合涂膜拉伸强度达到最优值、与纯壳聚糖单膜相比,复合膜的拉伸强度、断裂伸长率和直角撕裂强度分别提高了63.3%,45.4%和11.6%,透水率降低了73.1%.可见复合膜的性能优于单膜.  相似文献   

19.
为研究不同ZrB_2溅射功率对Zr-B-Nb-N纳米复合膜结构和机械性能的影响,利用磁控多靶共溅射的方法,在不同ZrB_2溅射功率下制备基底温度分别为室温和100℃的Zr-B-Nb-N薄膜,并应用XP-2表面轮廓仪测得镀层厚度和残余应力,利用X线衍射(XRD)测得复合膜的结构和晶向,利用电子显微镜(TEM)观察断面形貌,采用纳米压痕仪对薄膜进行划痕实验并测量薄膜的硬度、弹性模量和膜基结合力.实验结果表明:ZrB_2溅射功率为100 W时,复合膜具有ZrB_2(001)和ZrB_2(002)择优取向和非晶态Nb N包覆柱状晶ZrB_2的结构,这种结构的形成使复合膜的硬度达到最高的31.3GPa,相应的弹性模量为380.2 GPa.通过基底加温处理后,样品硬度无明显变化,说明复合膜的硬度具有良好的热稳定性.研究结果说明ZrB_2功率的改变对薄膜的微观结构和机械性能具有明显影响.  相似文献   

20.
采用共混法制备了基于环氧丙烯酸酯(EA)的含纳米SiO2粒子的无机-有机紫外光固化复合涂层,并对其结构、热稳定性和物理性能进行了检测.结果表明,纳米SiO2粒子在涂层内部形成了含Si—O—Si的交联网络结构,这种结构有助于改善涂层的热稳定性.SiO2的质量分数为5%时,复合涂层的热稳定性最高.随着SiO2添加量的增加,复合涂层的光泽度降低.加入适量的纳米SiO2粒子可以提高涂层的硬度,当添加量为3%~5%时,复合涂层的铅笔硬度可以达到3H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号