首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 189 毫秒
1.
考虑非线性特征的4WS车辆滑模鲁棒稳定性控制   总被引:2,自引:0,他引:2  
为了系统地分析非线性四轮转向车辆的动力学行为,并同时考虑实际车辆运行工况的复杂性,建立了具有非线性特征的四轮转向车辆动力学模型.选择质心侧偏角和横摆角速度作为控制变量,基于滑模控制理论和最优反馈控制理论,分别设计控制器抑制外部扰动;在J-turn的操纵模式下,比较2种控制算法的优越性,基于Matlab/Simulink环境下实现仿真结果的对比.结果表明,滑模控制下四轮转向车辆具有更优的操纵性能,将质心侧偏角控制在稳定范围内,并能较好地跟踪车辆的期望横摆角速度,可较理想地提高高速环境下四轮转向的抗干扰能力.  相似文献   

2.
以二自由度整车操纵稳定性研究为基础,建立车身零侧偏角的前馈控制策略对四轮转向车辆实施控制.在MATLAB中建立前轮转向、四轮转向车辆模型,并在角阶跃工况下进行仿真,发现其存在横摆角速度损失的缺陷,提出PID车身横摆角补偿控制策略,通过建模在角阶跃工况下仿真.结果表明:横摆角速度补偿控制策略可较好地解决车辆转向灵敏度的问题.  相似文献   

3.
针对具有线控技术的四轮转向车辆,设计了一种全滑模控制器用于提高车辆的操纵稳定性.以前、后车轮转角作为控制输入,设计全滑模控制器使实际的质心侧偏角和横摆角速度跟踪理想的质心侧偏角和横摆角速度,通过在滑模面中加入跟踪误差积分项来消除稳态跟踪误差不为零的现象,并运用Lyapunov定理给出了全滑模控制器的稳定条件.最后通过2种车辆模型下不同工况的仿真分析,对比了传统前轮转向、常规滑模控制的四轮转向和全滑模控制的四轮转向的动力学响应,结果表明所设计的全滑模控制器不仅消除了稳态跟踪误差不为零的现象,而且提升了车辆抵抗外界干扰和系统参数摄动的鲁棒性.  相似文献   

4.
针对四轮独立驱动电动汽车转向稳定性的横摆力矩控制问题,建立了七自由度整车模型和Dugoff轮胎模型.基于滑模控制理论,选择质心侧偏角和横摆角速度两者为联合控制变量,并以汽车车速和路面附着系数为输入,运用模糊控制理论确定联合控制变量的联合控制参数,设计了四轮独立驱动电动汽车转向稳定性的横摆力矩控制策略.在Matlab/Simulink环境下选取不同车速、不同路面附着系数进行了连续转向行驶和突然转向行驶的仿真分析.结果表明,所设计的控制策略能够将质心侧偏角和横摆角速度控制在稳定范围内,使车辆在任意转向行驶工况下保持稳定,最大限度地提高轮毂电动汽车的转向稳定性.  相似文献   

5.
车辆横摆稳定性的模糊控制   总被引:4,自引:0,他引:4  
提出了一个模糊逻辑控制方法来提高车辆的横摆稳定性.差动制动产生适当的横摆力矩使车辆横摆角速度和质心侧偏角跟踪其期望值,同时利用3自由度模型对质心侧偏角进行了估计.采用7自由度非线性车辆模型在不同转向操纵条件下进行了仿真.仿真结果验证了所设计的模糊控制器的有效性.  相似文献   

6.
模糊逻辑在车辆稳定性控制系统中的应用   总被引:2,自引:0,他引:2  
探讨了车辆在高速转向的极限运动工况下,利用施加于各车轮不同纵向力产生的辅助横摆力矩来提高车辆动力学稳定性的基本原理.推导了七自由度整车动力学模型,建立了车辆质心侧偏角观测器,并且考虑到车辆参数和运行工况的复杂多变,设计基于模糊控制逻辑的车辆稳定性控制策略,通过控制横摆角速度和质心侧偏角可使车辆对象输出跟踪理想参考模型的输出,用Matlah/Simulink建立车辆仿真模型,对所设计的控制算法进行了数字仿真,最后利用基于dSPACE的硬件在环仿真技术,对设计控制器的性能进行了实验验证.结果表明:所设计的模糊控制器能够显著改善车辆的操纵稳定性,特别是在低附着系数路面工况下.  相似文献   

7.
针对分布式电动汽车在高速转弯和变道时,由于其高度的非线性特性和参数的不确定性而出现失稳问题,提出了分布式电动车辆横向稳定性模糊滑模控制的方法.首先建立二自由度车辆动力学模型,得到理想横摆角速度和质心侧偏角;其次设计模糊滑模控制器跟踪理想横摆角速度及质心侧偏角,并依据车辆行驶过程中的反馈信息,利用模糊逻辑对滑模控制器中滑模切换函数的系数不断进行调整优化,采用直接横摆力矩控制方法得出期望的附加横摆力矩;最后使用平均分配原则实现附加横摆力矩的控制分配.基于MATLAB/Simulink与Carsim联合仿真的结果表明,所提出的模糊滑模控制方法能够有效地控制车辆姿态并提高其横向稳定性.  相似文献   

8.
为了避免汽车在低附着路面上高速转弯或者紧急避障时易发生不稳定现象,设计了基于模糊理论和滑模理论的模糊滑模控制策略。建立车辆二自由度理想模型,选择横摆角速度和质心侧偏角作为控制变量,对其理想值进行计算;基于车辆运动参数对失稳状态做出分析;并对失稳状态下的车辆进行横摆力矩控制。基于等效控制法设计了积分滑模控制器,对横摆角速度和质心侧偏角的偏差采用质心侧偏角协调加权法调节比例权重,并通过模糊控制规则调节滑模控制器切换系统的切换增益大小,建立模糊滑模控制器。在MATLAB/Simulink中对控制策略进行仿真分析,仿真结果表明:在阶跃工况下,横摆角速度的稳态值与理想值仅差0.005 rad/s,质心侧偏角与理想值几乎重合,仅差0.003 rad;正弦工况下,横摆角速度超调值与理想值仅差0.04 rad/s,质心侧偏角也仅差0.008 rad。与参数自整定模糊PI控制策略相比,模糊滑模控制响应速度更快,能够较好地跟踪理想曲线,达到稳态效果更好;同时能产生更大的横摆力矩,更好地控制汽车的稳定性,验证了控制模型的正确性。  相似文献   

9.
采用汽车的"自行车"模型,建立了四轮转向汽车的数学模型,在MATLAB/Simulink环境下搭建仿真模型,对四轮转向汽车的前轮转角输入控制因子和横摆角速度反馈输入控制因子对汽车操纵稳定性的影响进行了仿真分析.研究表明,两控制因子均能显著降低汽车质心侧偏角和侧向加速度,提高车辆操纵稳定性,但同时又降低了车辆的横摆角速度,降低了驾驶员的转向感觉;横摆角速度反馈输入控制因子对汽车质心侧偏角的影响还表现出了二重性,在四轮转向设计阶段应根据具体情况合理选取两控制因子.  相似文献   

10.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

11.
基于Simulink的四轮转向汽车神经网络控制策略仿真   总被引:1,自引:0,他引:1  
针对汽车小转角时质心侧偏角为零,高速大转角时前轴抗侧滑的控制目标,提出一种四轮转向汽车控制策略.在Simulink环境下建立包含轮胎非线性和计及侧倾的三自由度四轮转向汽车模型,运用双隐含层BP神经网络训练得到四轮转向控制器.仿真结果表明,神经网络控制器可有效控制高速时汽车前轴滑动的趋势,并在低速到高速时使汽车质心侧偏角基本为零,控制误差低于比例转角控制策略和横摆角速度反馈控制策略.同时高速时横摆角速度响应与前轮转向汽车接近,汽车的侧向加速度和车身侧倾角稳态值比前轮转向有所降低.  相似文献   

12.
车辆横向稳定性的模糊控制仿真   总被引:1,自引:0,他引:1  
车辆横向稳定性一般是由车辆的结构来保证的,但车辆在较大侧向力作用下将丧失横向稳定性.通过建立车辆转向运动的简化模型,利用前馈补偿和模糊控制策略,将前轮转向角视为前馈输入变量来补偿转向角引起的车辆侧偏角变化;通过左右车轮制动力差产生附加力矩来控制车辆的横摆运动,同时以车辆横摆角速度为反馈输入变量来校正消除系统误差,设计了车辆模糊控制器,并对控制系统在不同车速下进行了仿真分析.仿真结果表明,施加控制的车辆与无控制的相比,横摆角速度与侧偏角的输出稳态值减小,超调量降低,改善了车辆的横向稳定性.特别在高速情况下,车辆横向稳定性改善更加明显.  相似文献   

13.
提出一种基于定量反馈理论的主动前轮转向策略,通过反馈控制系统控制汽车的动态特性,以跟踪汽车转向理想横摆角速度。进而提出了基于定量反馈理论的主动四轮转向策略,使得汽车重心处的侧偏角和车体横摆角速度实现了解耦控制。多种情况下的非线性仿真结果表明,给出的鲁棒解耦控制系统具有很好的控制特性。  相似文献   

14.
为了提高汽车的操纵稳定性,以4轮转向(4WS)汽车为研究对象,建立了2自由度系统的数学模型和状态方程。并以横摆角速度和侧偏角为优化目标,设计了线性二次型调节器(LQR)。通过质心侧偏角和横摆角速度的共同反馈,控制汽车后轮转角,实现4WS控制。在MATLAB/Simulink环境下完成了传统前轮转向汽车、零侧偏角比例控制及LQR控制的4WS汽车仿真。结果表明,相对于其他控制策略,基于状态反馈的LQR优化控制能够改善汽车的操纵稳定性,但不能够既将汽车的质心侧偏角降到基本为零,同时又保证横摆角速度处于理想状态。因此,汽车动力学集成控制将是未来汽车发展的重要方向。  相似文献   

15.
为了改善装有电子助力转向系统(EPS)的车辆操纵稳定性,分析研究了EPS中引入横摆角速度负反馈对车辆操纵稳定性的影响,建立了包含EPS的人-车系统数学模型,并利用SIMU—LINK工具箱进行了仿真分析。结果表明:该模型在EPS中引入横摆角速度负反馈,可以显著改善前轮角阶跃输入下车辆的横摆角速度的瞬态响应;EPS助力矩响应曲线上升平稳缓慢,有利于汽车在低附着系数路面高速转向行驶的操纵,从而提高了汽车的行驶安全性。  相似文献   

16.
研究了车辆稳定性控制系统中车身侧偏角的算法,建立了15自由度整车模型,其中包括车身的6个自由度,4个车轮的旋转和垂直运动自由度以及前轮转动自由度.根据方向盘转角、整车侧向加速度、横摆角速度及其变化率求得前、后轴侧向力进而求得前、后轴中心处侧偏角;根据横摆角速度、前、后轴中心处侧偏角求取整车的车身侧偏角.仿真结果表明,该算法能够在不同附着路面上,在较大车身侧偏角范围内准确求得整车车身侧偏角.  相似文献   

17.
基于模糊技术的汽车ESP系统综合反馈控制   总被引:1,自引:0,他引:1  
对汽车ESP(Electronic Stability Program)系统控制方法进行了分析,提出了以模糊控制技术为核心的横摆角速度和质心侧偏角综合反馈控制方法.考虑了轮胎的非线性特性对汽车转向特性与行驶稳定性的重要影响,考虑非线性轮胎模型(魔术公式),建立了二自由度四轮汽车模型及汽车参考模型.运用模糊控制原理,设计了模糊控制器,并基于Simulink进行了控制仿真.仿真结果表明:这种控制方法可以很好地控制汽车的横摆角速度和质心侧偏角,提高汽车的侧向稳定性.  相似文献   

18.
An four wheel steering (4WS) feedback control system that simultaneously achieves both body sideslip angle and yaw rate responses always desirable regardless of changes in vehicle dynamics. Quantitative feedback theory (QFT) is offered as the main tool for designing the control law. Inverted decoupling is also employed to make multivariable quantitative feedback design easier. Various nonlinear analyses are carried out and show that the proposed control system is a robust decoupling controller which not only makes body sideslip angle and yaw rate of the vehicle track the desired reference input signals respectively, but also satisfies the requirement of robustness for the control system. The results also indicate that the control system can make it available to realize ideal lateral steering dynamics tracking for vehicles.  相似文献   

19.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号