首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
本文讨论了连续函数列{f_2(x)}的极限函数f(x)连续的条件。采用了先把{f_2(x)}为正则收敛的条件减弱为弱正则收敛,或减弱为一致收敛,再减弱为广义一致收敛,最后成为一个定理:在[a,b]上的连续函数列{f_n(x)}的极限函数f(x)连续的充要条件是{f_n(x)}在[a,b]上是亚一致收敛的。  相似文献   

2.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

3.
提出用α-多项式进行函数逼近的问题,首先给出广义的伯恩斯坦多项式,利用它证明了α-多项式逼近定理,即:对于闭区间[a,b]上的连续函数f(x),存在α-多项式序列{pn(x,α)},使{pn(x,α)}在[a,b]上一致收敛于f(x)。从理论上解决用α-多项式进行函数逼近的问题。最后用数值例子说明对于有些数据用α-多项式(α≠1)进行函数逼近效果会更好。  相似文献   

4.
提出用α-多项式进行函数逼近的问题,首先给出广义的伯恩斯坦多项式,利用它证明了α-多项式逼近定理,即对于闭区间[a,b]上的连续函数f(x),存在α-多项式序列{pn(x,α)},使{pn(x,α)}在[a,b]上一致收敛于f(x).从理论上解决用α-多项式进行函数逼近的问题.最后用数值例子说明对于有些数据用α-多项式(α≠1)进行函数逼近效果会更好.  相似文献   

5.
设{L_n}是从 C[a,b]到 C[c,d]的一列算子,[c,d][a,b],如果存在一个函数列{φ_n(x)}在[c,d]上一致趋于0,在(c,d)上为正,满足以下两条:(1)存在函数类 T(L_n)使(φ_n(x))~(-1)[f(x)-L_n(f,x)]=0,x∈(c,d),成立,当且仅当 f∈T(L_n).(2)存在函数 f_n∈C[a,b],f_0∈T(L_n),使  相似文献   

6.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

7.
设Rn(x)∈Rlm={P(x)/Q(x)},(n=1,2,…)是函数f(x)的第n次最佳L2逼近元,记Sn(x)=∑nk=1Rk(x),(n=1,2,…),在某些附加条件下证明了序列{Sn(x)}一致收敛于f(x),给出了序列{Sn(x)}一致收敛于f(x)的充要条件,并在另一较弱条件下证明了序列{Rn(x)}及其各阶导函数序列{R(k)n(x)},(k=1,2,…) 一致收敛于零.  相似文献   

8.
利用锥拉伸与压缩不动点定理,讨论n阶奇异边值问题{x(n)(t)+λα(t)f(t,x(t))=0,t∈(a,b),x(a)=x″(a)=…=x(n-1)(a)=0,x′(b)=0非减正解的存在性,其中λ>0是常数,α∈C((a,b),R+), f∈C([a,b]×(0,∞),R+),R+是正实数集,α(t)可以在t=a,b 处奇异,f(t,s)可以在s=0处奇异.  相似文献   

9.
1 函数列一致收敛性定理定理1 若函数列f_n(x)在[a,b]上同等连续,且对于任一x∈[a,b],有f_n(x)→f(x)(n→∞),则f_n(x)在[a,b]一致收敛于f(x)。  相似文献   

10.
研究了[a,b]上的有界变差函数与[a,b]上的可微函数之间的关系,得出了有界变差函数是准可微函数;函数f(x)为准可微函数当且仅当f(x)为近似有界变差函数。  相似文献   

11.
设f:[0,1]×R2→R满足Caratheodory条件,a,b∈L1[0,1],a(·)≥0,b(t)≥0满足0≤∫10a(t)dt<1,0≤∫10b(t)dt<1,运用Leray-Schauder原理考虑了边值问题x″(t)=f(t,x(t),x′(t)) e(t),t∈[0,1],x′(0)=∫10b(t)x′(t)dt,x(1)=∫10a(t)x(t)dt解的存在性.  相似文献   

12.
Walsh引进函数φ_0(x+1)=φ_0(x),φ_n(x)=φ_0(2~nx)。由此得到[0,1]上完全正交系{φ_n(x)}。这里φ_0(x)=1, φ_n(x)=φ_n_1(x)·φ_n_2(x)…φ_n_r(x), n=2~n1+2~n2+…+2~nr,而n_(i+1)相似文献   

13.
广义积分收敛的必要条件具体地说为:若函数f(x)在[a,b]上黎曼可积,则f(x)在[a,b]上有界且几乎处处连续,而当f(x)的无限广义积分收敛时,则f(x)在其广义积分收敛的区域内几乎处处连续但不一定有界。若无穷级数收敛,则其一般项必收敛于0,而当f(x)的无限广义积分收敛时,f(x)却不一定收敛于0(当x趋于无穷大时),要使f(x)收敛于0(x→∞),还需附加一定的条件。  相似文献   

14.
设有界函数f(x)在(a,b)上Riemann可积,对f(x)的不连续点,Φ(x)=integral from n=a to x(t)dt的可导性如何呢?本文指出:设X_0是f(x)在(a,b)上的不连续点,f(x)在(a,b)上的连续点组成的集合为D、x→x_0存在,则φ(X_O)存在且等于X→X_0.但逆命题不成立。  相似文献   

15.
实函中证明了[a b]上的有界函数f(x)黎曼可积的充要条件是f(x)不连续点所成之集的勒贝格测度为零。关于黎曼——斯蒂阶积分也有类似定理:f(x)在[a,b]上有界,α(x)为[a,b]上的有界变差函数,则f(x)在[a,b]上关于a(x)黎曼——斯蒂阶可积的充要条件是α(x)在f(x)不连续点所成之集上的全变差为零。本文就是给出这个定理的一个证明。  相似文献   

16.
设f(■)为(1)式定义的n值超越代数体函数,如存在n+1个亚纯函数φ_i(i=0,1,…,n),满足: T(r,φ_i)=0{T(r,f)} r→∞且δ(φ_i,f)=1 (i=0,1,…,n)则f(■)的级为正整数或无穷且正规增长。  相似文献   

17.
设L[a,b]表示有限区间[a,b]上可积函数的全体,{f_n(x)}为定义在[a,b]上的一个函数列。若对任意的g(x)∈L[a,b],只要integral from n=a to b f_n(x)g(x)=0,n=1,2,3,……就有g(x)在[a,b]上几乎处处为零,则称{f_n(x)}在[a,b]上是完全的。著名的Müntz—Sz'asz定理指出:幂函数列{x~(n_p)}在[a,b]上完全的充分必要条件是sum from p=1 to ∞ 1/n_p=+∞。其中a≥0,0相似文献   

18.
广义积分收敛的必要条件具体地说为:若函数f(x) 在[a,b]上黎曼可积,则f(x) 在[a,b]上有界且几乎处处连续,而当f(x) 的无限广义积分收敛时,则f(x) 在其广义积分收敛的区域内几乎处处连续但不一定有界.若无穷级数收敛,则其一般项必收敛于0 ,而当 f(x) 的无限广义积分收敛时,f(x) 却不一定收敛于0(当x趋于无穷大时),要使 f(x) 收敛于0(x→∞) ,还需附加一定的条件.  相似文献   

19.
借助于优超理论,在适当的假设下建立了如下的Jensen-Pe(c)ari(c)-Svrtan型不等式f(A(x))/f(A(φx))=fn,n(x)/fn,n(φx)≤(≥)...≤(≥)fk+1,n(x)/fk+1,n(φx)≤(≥)fk,n(x)/fk,n(φx)≤(≥)...≤(≥)f1,n(x)/f1,n(φx)=A(f(x))/A(f(φx)),这里,A(·)表示算术平均,φ:[a,b]→R, f:[a,maxt∈[a,b]{φ(t)}]→R, fk,n(x):=1/(nk)∑1≤i1<...<ik≤nf(xi1+xi2+...+xik/k), x∈[a,b]n.  相似文献   

20.
设f(x)是点集E上的非负函数,对每个自然数n,令 {f(x)}_n=((f(x),0≤f(x)≤n n,n相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号