首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

2.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

3.
定义1.标准函数f(x)在(a,b)(?)~*R上有定义,如果 {n/integral from n=a_n to n f(x)dx存在且有限}∈U其中a=[a_n],b=[b_n],U为自然数集N的自由超滤子,integral from n=a_n to b_n f(x)dx是Riemann意义下的积分,则称f(x)在(a, b)(?)~*R上可积,称非标准数[integral from n=a_n to n f(x)dx]为f(x)在(a, b)(?)~*R上的积分,记作integral from n=(a.b) to f(x)dx。  相似文献   

4.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

5.
在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to ∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to ∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to ∞(dx) integral from α to ∞(|f(x,y)|dy),integral from α to ∞(dy) integral from a to ∞(|f(x,y)dx)至少有一个存在(有限)。那末  相似文献   

6.
最近B.Jacobson证得 定理J 若f(t)在[a,x]上连续,在a点可导且f'(a)≠0,又c适合 integral from n=c to x(f(t)dt=f(c)(x-a),a相似文献   

7.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

8.
证明了n阶齐次线性微分方程(dnx)/(dtn)+a1(t)(dn-1x)/(dtn-1)+…+an-1(t)dx/dt+an(t)x=0的Liouville公式W′(t)=W(t0)e-∫tt0a1(s)ds是一阶齐次线性微分方程组x′=A(t)x所对应的Liouville公式W′(t)=W(t0)e-integral from a=1 to t sum from i=1 to n aii(s)ds的特殊情形。  相似文献   

9.
设有界函数f(x)在(a,b)上Riemann可积,对f(x)的不连续点,Φ(x)=integral from n=a to x(t)dt的可导性如何呢?本文指出:设X_0是f(x)在(a,b)上的不连续点,f(x)在(a,b)上的连续点组成的集合为D、x→x_0存在,则φ(X_O)存在且等于X→X_0.但逆命题不成立。  相似文献   

10.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

11.
大家知道,如果f(x)在〔a,b〕上非负连续且integral from a to b(f(x)dx=0),则f(x)在〔a,b〕上恒等于0.但若把条件减弱为“f(x)在〔a.b〕上非负可积且integral from a to ∞b(f(x)dx=0)”,是否还能作出“在〔a,b〕  相似文献   

12.
当函数f(x)在区间[a,b]上(R)可积,且f(x)>0(或f(x)<0)在[a,b]上几乎处处成立时,给出了(R)积分不等式以∫a^bf(x)dx>0(或∫a^bf(x)dx<0)及其证明。  相似文献   

13.
本文讨论了积分变上限函数列Fn(x)=φn∫(x)af(t)dt及Fn(x)=φ(∫x)afn(t)dt的一致收敛性。得出了当{fn(x)}在[a,b]上一致收敛于可积函数f(x)时,如果φ(x)有界;或{φn(x)}在[a,b]上一致收敛于φ(x),且φ(x),f(x)有界,那么{Fn(x)}在[a,b]上一致收敛的结论。  相似文献   

14.
I.總说 1.设:f(x)是以2π為周期的連续函数。记这种函数的全体为C_(2π)。下面所考慮的函数都屬於C_(2π)。將函数f(x)的Fejer積分和de la Vallee-Poussin積分以及Jackson积分分别记做 a_n(f,x)=1/nπ integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~2 dt, V_n(f,x)=1/2π(2n)!!/(2n-1)!! integral from n=-π to π f(t)cos~(2n) t-x/2 dt, J_n(f,x)=3/nπ(2n~2+1) integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~4 dt.  相似文献   

15.
求函数f(x)在区间(a,b)上的定积分子∫^b a f(x)dx,常用的方法是牛顿--莱布尼兹公式,若求出f(x)在区间(a,b)上的一原函数F(x).则:∫^b a f(x)dx=F(b)-F(a)当∫(x)是反三角函数,对数函数等时,可用定积分分部公式求积分.本文介绍一种利用反函数的定积分求∫^b a f(x)如的方计。  相似文献   

16.
本文研究Fejr型核的奇异积分f_n(x)=n integral from n=-∞ to ∞ f(t)K(n(t-x))dt在空间Lp(-∞,∞)(P≥1)内近迫p冪可求和函数f(x)的階的估计问题.在这里,我们假定函数K(t)满足下列条件:1) K(t)>0,2)K(-t)=K(t),3)integral from n=-∞ to ∞ K(t)dt=1,  相似文献   

17.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

18.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

19.
<正> 在积分学中,为证明原函数存在定理及牛顿—莱布尼兹公式,引进了积分上限函数integral from n=a to x(f(t)dt)(假设f(x)在[a,b]上连续,x∈[a,b]).该函数的性质及其应用,在一般的分析教材中,涉及甚少或零星分散.本文较系统地讨论了它的李普希兹连续性、单调性、奇偶性、周期性和n重迭次积分公式;并将它的应用大体分类,探讨了它在求导致、求极限、证明单调性及连续性、证明积分中值定理,定义有关函数等多方面的应用,特别是利用了积分上限函数证明积分中值定理.  相似文献   

20.
设f:[0,1]×R2→R满足Caratheodory条件,a,b,e∈L1[0,1],利用Leray Schauder原理,获得了边值问题:xn=f(t,x(t),x′(t))+e(t),t∈(0,1),αx(0)-βx′(0)=∫01 a(t)dt,γx(1)+δx′(1)=∫01 b(t)x(t)dt,解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号