首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
基于模型预测控制理论,从提高车辆极限工况稳定性角度,研究车辆纵向和侧向运动的水平集成控制及纵向、侧向和垂向的全局集成控制.确定了分层集成控制结构,设计了转向/制动模型预测控制器和主动悬架控制器.采用单轮规则制动分配法,实现了车辆底盘转向/制动的水平集成控制和转向/制动/悬架的全局集成控制,并通过仿真实验对算法进行验证.结果表明:集成控制能有效提高车辆极限工况的稳定性和主动安全性.  相似文献   

2.
为实现主动前轮转向系统与主动悬架系统的集成及解耦控制,该文采用自抗扰方法对两个子系统进行集成控制,设计了主动前轮转向和主动悬架的自抗扰控制器,并进行了路面扰动输入下的双移线试验。研究了车辆的路径跟踪性能、转向路感、转向灵敏度和舒适性,对比分析了无控制、主动转向单独控制和主动悬架单独控制系统集成的控制特性。结果表明,自抗扰集成控制的主动前轮转向与主动悬架能同时改善转向性能指标和舒适性能指标,提高了车辆操纵稳定性和乘坐舒适性。自抗扰控制器设计无需精确数学模型,干扰抑制也无需扰动模型,控制方法简单,鲁棒性好,易实现转向、悬架及各悬架间的解耦控制。  相似文献   

3.
针对线控转向四轮独立驱动电动车的主动前轮转向(AFS)与直接横摆力矩控制(DYC)的集成控制问题,提出了一种基于模型预测控制的、采用分层集成控制结构的集成控制算法,设计了模型预测控制器,研究了基于二次规划的驱动力分配方法,并通过仿真实验对算法进行验证.结果表明:基于模型预测控制理论的集成控制算法能够使车辆有效地跟踪期望运动轨迹,提高车辆稳定性和主动安全性.  相似文献   

4.
屈小贞  冯浩轩  李刚 《科学技术与工程》2021,21(30):13155-13162
为提高车辆行驶时的操纵稳定性和安全性,本文通过协同控制策略研究分析了主动转向与ESP对车辆操纵稳定性的影响。首先基于主动转向的二自由度线性车辆动力学模型设定上层协同控制策略,及下层主动转向控制器和ESP控制器,并结合CarSim与Matlab/Simulink平台完成主动转向系统、双PID控制的ESP系统、及其协同控制的整车模型搭建,然后再基于硬件在环试验台进行高附着路面和低附着路面的双移线试验,最后对比分析不同工况下主动转向与ESP协同控制相对其独立控制下的车辆质心侧偏角和横摆角速度响应曲线。结果表明本文设计的主动转向与ESP协同控制策略相对其独立控制,可更好地提高车辆的操纵稳定性。可见主动转向与ESP协同控制的稳定性控制效果明显提高,在极限工况下能将车辆控制在安全行驶的稳定范围内。  相似文献   

5.
针对主动悬架与电动助力转向系统相互影响、相互干扰的特点,该文建立了两者集成控制模型,应用预测控制理论,设计了预测控制策略,实现了主动悬架与电动助力转向的集成控制。并在M atlab/S im u link环境中进行仿真模拟。仿真结果表明:具有预测控制策略的主动悬架与电动助力转向集成系统不仅能明显改善车辆行驶平顺性,提高转向轻便性,并且对由转向和路面输入引起的振动能够进行有效抑制,使车辆的操纵稳定性和乘坐舒适性均有不同程度的提高。  相似文献   

6.
汽车电动助力转向与主动悬架集成控制及其仿真   总被引:7,自引:0,他引:7  
文章根据汽车系统动力学原理,建立了汽车电动助力转向和主动悬架集成控制的动力学模型。对PD控制的EPS、最优控制下悬架和集成控制的系统进行了仿真计算。计算结果表明,该模型较好地反映了汽车转向时的实际工况,EPS和主动悬架的集成控制的效果优于单独控制,为系统的集成优化打下了基础。  相似文献   

7.
在建立的包含电动助力转向系统的转向运动模型、俯仰运动模型和侧倾运动模型汽车整车模型基础上,选用车身横摆角速度、横向运动速度等参数评价车辆操纵稳定性。运用95百分位四次幂和力作为动载荷道路破坏的评价指标,设计了自适应模糊控制的汽车主动悬架与电动助力转向系统集成控制器,并分析了不同路面和速度对理论道路破坏系数的影响。计算结果表明,该自适应模糊集成控制策略,与被动悬架与转向系统比较,既保证了车辆操纵轻便性,又明显提高了整车稳定性,同时集成控制的车辆具有良好的道路友好性,延长了道路的使用寿命。  相似文献   

8.
在建立悬架和转向系统整车动力学模型的基础上,分析主动悬架系统与电动助力转向系统性能之问的相互关系及协调机理,提出调整双系统控制参数的联合优化方法,对主动悬架系统进行自校正控制,对电动助力转向系统进行PID控制,研究集成系统结构参数和控制参数的耦合问题.仿真结果表明,与不加控制、单系统控制相比,集成控制下车辆转向助力效果增强,反应车辆姿态的质心加速度、横摆角速度、车身侧倾角等都有明显提高,车辆的行驶平顺性和操纵稳定性均得到明显加强,整车性能得到提高.  相似文献   

9.
为了提高车辆操纵稳定性,本文集成独立转向和主动脉冲转向提出了一种主动后轮独立脉冲转向(ARIPS)控制策略,并对此进行理论分析和试验研究.通过建立ARIPS系统仿真动力学模型,研究此系统的运行对悬架性能的影响并分析不同转向脉冲控制参数对车辆稳定性的影响.依据仿真分析和频率分析方法确定最优脉冲参数.设计ARIPS控制器及脉冲转角分配模块,基于CarSim和Simulink进行联合仿真分析,验证ARIPS的控制性能.研制并安装主动脉冲转向系统,基于试验Lexus车辆进行整车试验研究,验证ARIPS系统的实用性.仿真和试验结果表明:验证了ARIPS系统的可行性和经济性,ARIPS控制能有效提高车辆的操纵稳定性,比主动后轮转向(ARS)和主动后轮脉冲转向(ARPS)具有更好的控制效果,对改进四轮转向(4WS)系统的性能提供了一个新的研究方向和试验基础.  相似文献   

10.
针对四轮独立转向四轮独立驱动电动汽车的操纵稳定性问题,提出了一种基于主动后轮转向(ARS)和直接横摆力矩控制(DYC)的集成控制策略.采用变传动比参考模型,通过基于滑模变结构设计的ARS控制器和非线性DYC控制器,对轮胎线性区域内的控制不足进行弥补,提升车辆非线性范围的操纵性能.对双移线工况进行了测试.结果表明:集成控制器优于ARS控制器和DYC控制器,能够有效提升车辆操纵稳定性以及降低横摆力矩需求,提高了车辆的纵向稳定裕度,集成控制是有效的.  相似文献   

11.
对电动汽车的线控转向系统结构和基于两自由度的车辆动力学模型对线控转向稳态增益不变的理想转向传动比进行了设计;同时,利用MATLAB/Simulink建立线控转向系统数学模型和主动转向控制策略。在主动转向控制中,通过理想转向传动比和模糊滑模变结构动态稳定性主动控制算法,控制补偿轮边转向电机的转角。通过正弦输入的仿真试验表明,以理想转向传动比为基础,设计的此算法能满足车辆前轮转角实时补偿的需求,进而可有效提高了汽车的行驶稳定性。  相似文献   

12.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

13.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

14.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

15.
为了增强车辆在外界干扰存下的路径跟随性能,提出了一种基于广义预测控制(GPC)的主动转向控制器来保证车辆对于路径的跟踪能力.采用受控自回归积分滑动平均模型(CARIMA)作为预测模型,通过带遗忘因子的最小二乘法辨识方法获得CARIMA模型参数,避免了由于车辆非线性造成的参数化建模不准确、繁琐问题.使用车辆路径侧向跟踪误差作为控制器输入,方向盘附加转角作为输出,与驾驶员方向盘转角进行综合,获得车辆方向盘最终转角.在Simulink-CarSim联合仿真环境下,验证了所设计控制器在双移线工况有强侧向风干扰时车辆对路径的跟随性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号