首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

3.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

4.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

5.
6.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

7.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

8.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

9.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

10.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

11.
随物赋形,气韵自然,是自然之美在塑造艺术形象方面的重要特征。自然之美的文学艺术品,在艺术形象上表现为随物赋形并突出地体现为强调“神似”、“传神”。艺术形象的自然之美,追求的是传神之美,追求的是传神自然,亦即气韵自然。  相似文献   

12.
五种预氧化工艺处理污染原水的消毒性能比较   总被引:1,自引:0,他引:1  
观察了水中腐殖酸和乳糖蛋白胨培养液的含量变化对高锰酸钾、氯、氯胺单独处理工艺及高锰酸钾与氯或氯胺联用工艺消毒效果的影响.结果表明,有机物浓度越高,高锰酸钾与氯或氯胺联用工艺与单独氯或氯胺工艺消毒效能相比所占优势越明显,尤其是当水中含有大量有机氮化合物时,采取高锰酸钾与氯或氯胺联用能更有效提高预处理时消毒效能.对有机污染严重的水源水进行预处理时,高锰酸钾与氯或氯胺联用预氧化能够减少有机物对消毒效果的影响,发挥预处理工艺对致病微生物的多级屏障作用,保障供水安全。  相似文献   

13.
将混凝土剪压(包括剪拉)强度相关性规律统一表达为三参数椭圆公式或两参数椭圆公式其中,三参数椭圆公式符合某些试验结果:而两参数椭圆公式,或是由三参数椭圆公式简化而来,或是由双参数强度准则导出的,将它们分别与试验公式作了比较,其中之二也是可用的  相似文献   

14.
目的:探讨64层螺旋CT在急性肺挫伤诊断中的应用价值。方法:收集临床怀疑肺挫伤患者461例,所有患者于入院后1 h内行64层螺旋CT胸部平扫,判断有无肺挫伤。结果:诊断肺挫伤113例,双肺广泛性挫伤12例,右肺挫伤61例,左肺挫伤40例;肺不张22例;合并气胸33例,其中血气胸10例;肋骨骨折38例,锁骨骨折4例,肩胛骨骨折2例,胸椎骨折2例,胸骨骨折1例;皮下气肿87例,纵膈积气11例,纵膈血肿3例。结论:64层螺旋CT能有效诊断肺挫伤,尤其对影像学征象较隐蔽的病变更具优势。  相似文献   

15.
高职教育督导应走出误区,保持正确的方向,始终坚持教学督导与教育督导相结合、常规督导与专项督导相结合、事后督导与事前督导相结合、"督"与"导"相结合、校内督导与社会评价相结合、课堂督导与实践教学督导相结合、督教与督学和督管相结合、教学活动督导与设备利用督导相结合,以全面提高教育教学质量与人才培养质量。  相似文献   

16.
目的 :分析重型颅脑交通伤的临床特点及救治要点。方法 :回顾性分析我科2000年1月—2003年12月的64例重型颅脑交通伤病例的临床特点、CT资料及救治后的结果。分析原发昏迷时间、入院时GCS评分、救治措施与预后的关系。结果 :64例伤员中 ,单纯颅脑损伤24例 ,多发伤40例。原发性昏迷51例 ,继发性昏迷8例。GCS评分3~5分20例 ,5~8分44例。开颅手术23例 ,其它手术15例 ,气管切开35例。死亡22例 ,植物生存4例 ,重残2例 ,中残6例 ,恢复良好30例。结论 :重型颅脑交通伤伤情重、复合伤多、伤情复杂。及时有效的院前急救及入院后处理对患者的预后有重要意义  相似文献   

17.
不同电化学条件下氧化后碳纤维表面基团的XPS分析   总被引:4,自引:0,他引:4  
在不同的电流密度,电解质浓度和处理时间上对粘胶基碳纤维进行电化学氧化,然后用X-射线光电子能谱分析了氧化后碳纤维的表面基团,讨论了表面基团随着这些电化学条件的变化规律。  相似文献   

18.
比较了用偏高岭石与硅灰分别制备的高强混凝土的施工性能、强度性能、收缩变形性能和抗硫酸盐侵蚀性能.试验结果表明,用偏高岭石制备的高强混凝土的施工性能优于硅灰制备的高强混凝土;在水胶比较高时,偏高岭石混凝土的强度高于硅灰混凝土强度,水胶比较低时则相反,是硅灰混凝土强度高于偏高岭石混凝土;总之,偏高岭石混凝土的自收缩和干燥收缩小于硅灰混凝土;偏高岭石混凝土的抗硫酸盐侵蚀能力不低于掺硅灰的混凝土.偏高岭石是一种可与硅灰相媲美的活性矿物掺料.  相似文献   

19.
用幂级数解法或合成解法解有正则奇点的三阶线性方程,它的指标方程的根之差为整数(包括重根)时,不能求全部解.但已知一个或两个解后,用降阶法可求所缺的解.用合成解法求解有极点的三阶线性方程,当指标方程有二重根时,由非重根得一个解.然后利用降阶法求所缺的解;指标方程有三重根时作变量变换可以求解.笔者解决了这些问题,与文献[1]一起构成了三阶线性方程的完整解法.  相似文献   

20.
本文研究了双进气口无叶蜗壳径流向心式涡轮在全进气和部分进气条件下流量和效率的变化,提出了计算这种涡轮在变工况下的效率特性和流量特性的方法。用该法所得的计算值与实测值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号