首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873–1173 K. The extent of reduction was estimated on the basis of mass loss, and the magnetization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was partially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic properties.  相似文献   

2.
The isothermal reduction of the Panzhihua titanomagnetite concentrates (PTC) briquette containing coal under argon atmosphere was investigated by thermogravimetry in an electric resistance furnace within the temperature range of 1250–1350℃. The samples reduced in argon at 1350℃ for different time were examined by X-ray diffraction (XRD) analysis. Model-fitting and model-free methods were used to evaluate the apparent activation energy of the reduction reaction. It is found that the reduction rate is very fast at the early stage, and then, at a later stage, the reduction rate becomes slow and decreases gradually to the end of the reduction. It is also observed that the reduction of PTC by coal depends greatly on the temperature. At high temperatures, the reduction degree reaches high values faster and the final value achieved is higher than at low temperatures. The final phase composition of the reduced PTC-coal briquette consists in iron and ferrous-pseudobrookite (FeTi2O5), while Fe2.75Ti0.25O4, Fe2.5Ti0.5O4, Fe2.25Ti0.75O4, ilmenite (FeTiO3) and wustite (FeO) are intermediate products. The reaction rate is controlled by the phase boundary reaction for reduction degree less than 0.2 with an apparent activation energy of about 68 kJ·mol?1 and by three-dimensional diffusion for reduction degree greater than 0.75 with an apparent activation energy of about 134 kJ·mol?1. For the reduction degree in the range of 0.2–0.75, the reaction rate is under mixed control, and the activation energy increases with the increase of the reduction degree.  相似文献   

3.
The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M3O5 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ·mol-1.  相似文献   

4.
This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine.  相似文献   

5.
The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate (VTC) by adding CaCO3 was investigated. Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and CaCO3 in a reductive atmosphere, where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3. The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test. Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate, and the optimum conditions were a CaCO3 dosage of 18wt% and a reduction temperature of 1400°C. Additionally, scanning electron microscopy–energy dispersive spectrometry (SEM–EDS) analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50 μm. Hence, the separation of calcium titanate and metallic iron will be the focus in the future study.  相似文献   

6.
Understanding the reduction behaviors and characteristics of the end products of Fe-Cr-O systems is very important not only for maximizing the recovery of metals from stainless steel dust but also for the subsequent reuse in metallurgical process. The present work first predicted the possible products thermodynamically when FeCr2O4 was reduced by C. The reduction behaviors by graphite of three kinds of Fe-Cr-O systems, i.e., FeCr2O4, Fe2O3+Cr2O3, and Fe+Cr2O3, were then investigated in 1350–1550℃. Further, the microstructures of final products and element distribution conditions were examined. The results suggest that, thermodynamically, the mass of products for the carbothermal reduction of FeCr2O4 is a strong function of temperature, and the initial carbon content is used. More Fe-Cr-C solution and less residual carbon content are obtained at higher temperatures and lower nC:nO ratios (the initial molar ratio of C to O in the sample). Experimental data show that the sample amount tends to affect the reduction rate, and the residual carbon content strongly depends on nC:nO. With regard to the phases present in products during the reaction process, metal carbides tend to form in the initial stage, whereas Fe-Cr-C solution forms when the degree of reduction is sufficiently high.  相似文献   

7.
Reduction of hematite pellets using H2–CO mixtures with a wide range of H2/CO by molar(1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures(1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2–CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.  相似文献   

8.
Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate (VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction (XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron (Fe) and anosovite (FeTi2O5) to metallic iron (Fe) and perovekite (CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.  相似文献   

9.
By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivity. The increase of carbon-to-oxygen mole ratio (C/O) can lead to the enhancement of reaction rate and reduction fraction, but cannot change the temperature and trend of each reaction. The reaction temperature of hematite reduced by biomass char is at least 100 K lower than that reduced by coal and coke, the maximum reaction rate is 1.57 times as high as that of coal, and the final reaction fraction is much higher. Model calculation indicates that the use of burden composed of biomass char and iron ore for blast furnaces can probably decrease the temperature of the thermal reserve zone and reduce the CO equilibrium concentration.  相似文献   

10.
CO2 sequestration by mineral carbonation can permanently store CO2 and mitigate climate change. However, the cost and reaction rate of mineral carbonation must be balanced to be viable for industrial applications. In this study, it was attempted to reduce the carbonation costs by using mine waste rock as a feed stock and to enhance the reaction rate using wet mechanical activation as a pre-treatment method. Slurry rheological properties, particle size distribution, specific surface area, crystallinity, and CO2 sequestration reaction efficiency of the initial and mechanically activated mine waste rock and olivine were characterized. The results show that serpentine acts as a catalyst, increasing the slurry yield stress, assisting new surface formation, and hindering the size reduction and structure amorphization. Mechanically activated mine waste rock exhibits a higher carbonation conversion than olivine with equal specific milling energy input. The use of a high-speed stirred mill may render the mineral carbonation suitable for mining industrial practice.  相似文献   

11.
The mini-sintering test was introduced. The experiments of specimens of rich hematite with lowering SiO2 content were carried out by the mini-sintering test. The strength and mechanism of agglomeration were studied mainly when silica content in sintered specimens was decreased gradually. The relationships between SiO2 volume and morphology of sinter were also investigated. It is considered that high grade sinter can be developed by raising sinter basicity so as to enhance complex calcium ferrite content or lowering sinter basicity so as to make Fe2O3 bonding for strength.  相似文献   

12.
Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction (XRD), and quadrupole mass spectrometry. The kinetics parameters of the reduction stages were obtained by isoconversional (model-free) methods. Three stages in the reduction are Fe2O3→Fe3O4, Fe3O4→FeO, and FeO→Fe, which start at 912 K, 1255 K, and 1397 K, respectively. The CO content in the evolved gas is lower than the CO2 content in the Fe2O3→Fe3O4 stage but is substantially greater than the CO2 contents in the Fe3O4→FeO and FeO→Fe stages, where gasification starts at approximately 1205 K. The activation energy (E) of the three stages are 126–309 kJ/mol, 628 kJ/mol, and 648 kJ/mol, respectively. The restrictive step of the total reduction is FeO→Fe. If the rate of the total reduction is to be improved, the rate of the FeO→Fe reduction should be improved first. The activation energy of the first stage is much lower than those of the latter two stages because of carbon gasification. Carbon gasification and FexOy reduction by CO, which are the restrictive step in the last two stages, require further study.  相似文献   

13.
The morphological and mineralogical characterizations of a Chinese oolitic iron ore (Exi deposit) were studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy in this work. It is shown that the Exi ore is mainly composed of hematite, quartz, apatite, and chlorite. The hematite is present as the oolitic layers and in the spaces between the aggregated ooids; quartz exists as granular particles in the spaces and as nucleuses in ooids; the harmful mineral, apatite, is associated with hematite as the oolitic layers, fine dissemination, granular particles in the spaces, and nucleuses in ooids. From the viewpoint of mineral beneficiation, it is hard to separate apatite and chlorite but easy to separate quartz from hematite in the Exi iron ore in recovering the iron values.  相似文献   

14.
Numerous studies have demonstrated that Na2SO4 can significantly inhibit the reduction of iron oxide in the selective reduction process of laterite nickel ore. FeS generated in the process plays an important role in selective reduction, but the generation process of FeS and its inhibition mechanism on iron reduction are not clear. To figure this out, X-ray diffraction and scanning electron microscopy analyses were conducted to study the roasted ore. The results show that when Na2SO4 is added in the roasting, the FeO content in the roasted ore increases accompanied by the emergence of FeS phase. Further analysis indicates that Na2S formed by the reaction of Na2SO4 with CO reacts with SiO2 at the FeO surface to generate FeS and Na2Si2O5. As a result, a thin film forms on the surface of FeO, hindering the contact between reducing gas and FeO. Therefore, the reduction of iron is depressed, and the FeO content in the roasted ore increases.  相似文献   

15.
Reducing NOx emission of iron ore sintering process in a cost effective manner is a challenge for the iron and steel industry at present. Effects of the proportion of mill scale and coke breeze on the NOx emission, strength of sinter, and sinter indexes were studied by combustion and sinter pot tests. Results showed that the peak value of NO concentration, total of NO emission, and fuel-N conversion rate gradually decreased as the proportions of the mill scale increased because NO was reduced to N2 by Fe3O4, FeO, and Fe in the mill scale. The strength of sinter reached the highest value at 8.0wt% mill scale due to the formation of minerals with low melting point. The fuel-N conversion rate slightly fluctuated and total NOx emission significantly decreased with the decreased proportions of coke breeze because CO formation and content of N element in the sintered mixture decreased. However, the sinter strength also decreased due to the decrease in the amount of the melting minerals. Furthermore, results of the sinter pot tests indicated that NOx emission decreased. The sinter indexes performed well when the proportions of mill scale and coke breeze were 8.0wt% and 3.70wt% respectively in the sintered mixture.  相似文献   

16.
Hydrogenation kinetics of MLNi3.8(Co,Mn,Al)1.2 and MLNi3.7(Co,Mn,Al)1.2Cu0.1 alloy in α + β phase at the temperature range of 30~70 ℃ has been studied. The kinetic mechanism of hydrogen absorption is not affected by initial hydrogen pressure. Temperature does not influence the rate of hydrogen absorption obviously. In the prior and later period of hydrogen absorption the rate-controlling step is chemical reaction and hydrogen diffusion in the hydride phase respectively for MLNi3.8(Co,Mn,Al)1.2 alloy. Adding Cu, the rate-controlling step changes from chemical reaction to the nucleation and growth of β phase in the prior period and the process of hydrogen absorption still controlled by diffusion in the later period.  相似文献   

17.
To reveal the impact of the composite agglomeration process (CAP) on the reduction disintegration properties of TiO2-rich ironmaking burden for a blast furnace, the reduction disintegration indices (RDIs), mineral constituents, and microstructure of the products prepared by the CAP and the traditional sintering process (TSP) were investigated. The results showed that, compared to the sinter with a basicity of 2.0 prepared by the TSP, the RDI+6.3 and the RDI+3.15 of the CAP product with the same basicity increased by 28.2wt% and 13.7wt%, respectively, whereas the RDI-0.5 decreased by 2.7wt%. The analysis of the mineral constituents and microstructure of the products indicated that the decreasing titanohematite content decreased the volume expansion during reduction. Meanwhile, the decreasing perovskite content decreased its detrimental effect on the reduction disintegration properties. In addition, the higher silicoferrite of calcium and aluminum (SFCA) content improved the strength of the CAP product. Together, these factors result in an improvement of the RDI of the CAP products. In addition, compared to the sinter, the reduced CAP products clearly contained fewer cracks, which also led to mitigation of reduction disintegration.  相似文献   

18.
To identify and establish beneficiation techniques for banded hematite quartzite (BHQ) iron ore, a comprehensive research on BHQ ore treatment was carried out. The BHQ ore was assayed as 38.9wt% Fe, 42.5wt% SiO2, and 1.0wt% Al2O3. In this ore, hematite and quartz are present as the major mineral phases where goethite, martite, and magnetite are present in small amounts. The liberation of hematite particles can be enhanced to about 82% by reducing the particle size to below 63 μm. The rejection of silica particles can be obtained by magnetic and flotation separation techniques. Overall, the BHQ ore can be enriched to 65.3wt% Fe at 61.9% iron recovery. A flowsheet has been suggested for the commercial exploitation of the BHQ ore.  相似文献   

19.
The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the sinter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The experimental results revealed that the reaction of arsenic removal is mainly related to the oxygen atmosphere and temperature. During the sintering process, arsenic could be removed in the ignition layer, the sinter layer, and the combustion zone. A portion of FeAsS reacted with excess oxygen to generate FeAsO4, and the rest of the FeAsS reacted with oxygen to generate As2O3(g) and SO2(g). A portion of As2O3(g) mixed with Al2O3 or CaO, which resulted in the formation of arsenates such as AlAsO4 and Ca3(AsO4)2, leading to arsenic residues in sintering products. The FeAsS component in the blending ore was difficult to decompose in the preliminary heating zone, the dry zone, or the bottom layer because of the relatively low temperatures; however, As2O3(g) that originated from the high-temperature zone could react with metal oxides, resulting in the formation of arsenate residues.  相似文献   

20.
The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na2CO3was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction.By investigating the reaction between VTC and Na2CO3,it was concluded that molten Na2CO3broke the structure of titanomagnetite by combining with the acidic oxides(Fe2O3,TiO2,Al2O3,and SiO2)to form a Na-rich melt and release FeO and MgO.Therefore,Na2CO3accelerated the reduction rate.In addition,adding Na2CO3also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag.Thus,Na2CO3assisted carbothermic reduction is a promising method for treating VTC at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号