首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
在单分散准球形-αFe2O3纳米颗粒的悬浮液中,在氨碱催化下,CoCl2水解产生的Co(OH)2沉积在-αFe2O3纳米颗粒表面,形成核-壳粒子.经500℃热处理后,壳层物质晶化为立方晶系Co3O4,壳层厚度约为6 nm.不同的氨碱液对核-壳结构产生影响,在1 mol.L-1尿素溶液的催化下,得到均匀的核-壳结构.应用TEM和XRD分析了产物结构,并利用UV-Vis光谱对复合材料的光吸收特性进行了研究.与-αFe2O3纳米颗粒的吸收光谱比较,在光激发下,Co3O4/Fe2O3核-壳粒子光吸收特性发生改变,在可见光区产生新的强吸收峰.  相似文献   

2.
在反胶束体系中制备Fe3O4/SiO2核壳结构纳米粒子,并利用透射电子显微镜表征颗粒的结构和形貌.首先,在水体系中采用共沉淀法制备平均粒径为13 nm的Fe3O4纳米粒子,并用有机小分子柠檬酸对其进行表面修饰,加入氨水后形成稳定的Fe3O4胶体溶液.然后,将此胶体溶液作为水相滴加到Triton X-100/环己烷/正丁醇的表面活性剂/油相/助表面活性剂溶液体系中,搅拌后形成稳定的油包水反胶束体系.在反胶束内以氨水为催化剂,使正硅酸乙酯水解,从而获得SiO2包覆的Fe3O4核壳结构纳米粒子.实验结果表明,改变水和表面活性剂Triton X-100的浓度比ω,可以达到调控核壳结构纳米粒子形貌的目的.当ω=9时,可获得尺寸均匀、平均粒径约为100 nm的Fe3O4/SiO2核壳结构纳米粒子.  相似文献   

3.
用化学共沉淀法制备了Fe3O4纳米微粒,并用聚乙二醇(PEG)为表面活性剂进行表面修饰,制备稳定的水基Fe3O4磁流体,考察加料方式、铁盐浓度、表面活性剂用量等条件对Fe3O4纳米微粒粒径的影响,并用红外光谱及X射线衍射表征磁性颗粒的化学成分和晶体结构.结果表明:加料方式是影响产物粒径和磁性的重要因素,反滴法制备的磁流体粒径更小,磁性更强;铁盐浓度越高,磁流体粒径越大;随PEG质量浓度增大,磁流体粒径先减小后增大;n(Fe3+)=n(Fe2+)=0.3 mol/L,c(PEG)=50 g/L为最适宜的反应条件;未经包覆的Fe3O4纳米粒子平均粒径为15 nm,PEG包覆后粒径约为20 nm,呈现出核-壳结构.  相似文献   

4.
磁性纳米复合粒子表面接枝聚苯乙烯磺酸钠的制备   总被引:1,自引:0,他引:1  
合成了聚苯乙烯磺酸钠接枝Fe3O4/SiO2纳米复合材料.通过表面引发原子转移自由基聚合在Fe3O4/SiO2磁性纳米粒子表面包覆了阴离子聚电解质(聚苯乙烯磺酸钠).利用透射电子显微镜(TEM),傅立叶变换红外光谱仪(FT-IR),震荡磁力计(VSM),X射线能谱仪(EDS),全自动X射线衍射仪(XRD)等仪器对所制备的复合材料进行了表征,成功制备了尺寸均一的聚苯乙烯磺酸钠接枝Fe3O4/SiO2核壳结构的纳米复合材料.  相似文献   

5.
在共沉淀法制备Fe3O4纳米磁粉的基础上,以丙烯酰胺(AM)为单体,在水溶液中通过电子束辐照的方法,制备了具有核壳结构的磁性复合微球Fe3O4/PAM.采用XRD、AFM、IR等对样品进行表征.结果表明,制备的磁粉为Fe3O4单相,粒径为8 nm左右,磁性高分子微球Fe3O4/PAM直径约为100 nm,呈球形.分析了单体浓度、磁粉用量、交联剂浓度、辐照剂量等对Fe3O4/PAM微球粒径的影响规律.  相似文献   

6.
通过H2热还原法制备了一种以磁性介电材料Co Fe2O4为核,以磁性金属材料Co3Fe7-Co为壳的纳米核壳结构。表征了样品的形貌、结构、静态和动态磁性并利用Landau-Lifshitz-Gibert方程对核壳结构的磁谱进行了拟合。结果表明Co Fe2O4/Co3Fe7-Co纳米核壳结构能够有效的提高磁导率,其共振机制以自然共振和交换共振为主。该结构有利于增强磁损耗,在微波领域具有广泛应用价值。  相似文献   

7.
氨基改性Fe3O4@SiO2核壳结构的DNA吸附特性   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,以平均粒径20 nm的Fe3O4纳米颗粒为种子,在碱性环境下催化正硅酸乙酯(TEOS)水解制备Fe3O4@SiO2核壳结构纳米复合粒子;并采用前接枝方式在40℃水浴温度下,APTES为硅烷偶联剂,制备氨基功能化Fe3O4@SiO2纳米复合材料;通过透射电镜和红外光谱仪对材料的形貌和结构进行表征,并通过凝胶电泳,生物分光光度计等实验手段研究材料氨基改性前后对质粒DNA的吸附性能.研究结果表明:氨基改性后的纳米复合材料比没有改性的材料对质粒DNA具有更加良好的吸附性能,改性后的材料在吸附量和吸附速率上均有大幅度提高,且随着材料的用量加大,其最终的吸附效果也更好,并且由于材料良好的磁性能,使得被吸附的DNA能够更有效更方便地被回收.  相似文献   

8.
Fe3O4磁性纳米颗粒具有良好的微波吸波性能,但是也有着容易被氧化、吸收频带窄等缺点.以不同粒径的Fe3O4磁性纳米颗粒为核,采用模板法制备了具有双壳层结构的Fe3O4@SiO2@SiO2纳米复合材料.不仅提高了Fe3O4磁性纳米颗粒的稳定性,引入的介电材料还可以实行阻抗匹配,改善材料的吸波性能.  相似文献   

9.
通过简单方法在磁性粒子表面包覆氧化硅后,采用嫁接法将有机功能基团成功引入到壳层表面,得到核壳结构纳米材料Fe3O4@SiO2-R。通过N2物理吸附、透射电镜(TEM)、振动样品磁强计(VSM)分别对材料结构和磁性进行表征。所制备的界面活性复合材料Fe3O4@SiO2-R在油水两相界面表现出较高的乳化效率,少量的Fe3O4@SiO2-CH3就能配制得到磁响应特性的W/O型Pickering乳液,进一步系统研究了硅烷偶联剂和嫁接条件对Pickering乳液液滴尺寸和稳定性的影响。  相似文献   

10.
采用沉淀法制得球形单分散Bi2O3纳米粒子;通过共沉淀法制备球形单分散Bi2O3/Cu-O-Cr核壳结构复合纳米材料,通过X射线衍射、透射电镜、能谱分析和红外光谱等技术表征所合成材料的成分组成、晶体结构、微现形貌以及颗粒尺寸,并对Bi2Oa/Cu-O-Cr核壳结构的复合纳米粒子的形成机理进行研究。研究结果表明:在包覆前先对Bi2O3粒子进行表面铵离子(NH4^+)功能化是形成均匀核壳纳米结构的关键;铜铬包覆层以氨配合物的形式包在Bi2O3粒子表面,形成棱壳结构的复合粒子,复合粒子的平均粒度为78nm.核厚为60nm.  相似文献   

11.
以Fe(NO3)3·9H2O,Zn(CH3COO)2·2H2O和Cu(NO3)2·3H2O为原料,以柠檬酸为还原剂,采用燃烧法制备了ZnFe2O4和CuFe2O4纳米粉体,用X-射线粉末衍射仪(XRD)、红外光谱(IR)和振动样品磁强计(VSM)等手段对样品进行了表征,结果表明样品为尖晶石型铁酸锌纳米粉体和立方晶系的铁酸铜纳米粉体,其平均粒径约为19nm和22nm,并具有超顺磁性.  相似文献   

12.
报道了Fe3O4/SiO2纳米复合材料的可控合成方法.研究并探讨了乙醇-水体系配比及氨水和硅酸四乙酯的用量对纳米粒子形貌的影响,利用柠檬酸作分散剂,控制反应条件对Fe3O4纳米粒子进行表面修饰改性后,又对其进行SiO2包覆.然后运用X射线衍射仪(XRD)、透射电子显微镜(TEM)、红外(IR)对合成的纳米微粒的粒径、结构进行了表征.实验结果表明,产物为粒径均匀的单分散Fe3O4/SiO2复合纳米粒子,平均粒度约为100 nm.  相似文献   

13.
四氧化三铁/壳聚糖(Fe3O4/CS)纳米复合材料既具有磁响应功能,还具有与生物活性物质反应的特殊功能基团,可以作为生物活性物质的载体,具有生物可降解性。本文综述了Fe3O4/CS纳米复合材料的制备方法,如化学共沉淀法、表面吸附法、乳化交联法、原位沉析法,并分析了各种制备方法的优点和不足。简单介绍了Fe3O4/CS纳米复合材料在生物医学、水处理和食品工业等领域的应用现状和应用前景。  相似文献   

14.
纳米Fe3O4颗粒及其磁流体的制备与研究   总被引:1,自引:0,他引:1  
以氨水为沉淀剂,利用改进的化学共沉淀法制备粒径分布均匀的超顺磁性纳米Fe3O4颗粒.采用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、振动样品磁强计(VSM)及透射电子显微镜(TEM)等方法对试样进行了结构与性能表征.结果表明:当n(Fe3+)/n(Fe2+)=1.75,温度为60℃,pH值为9时,超声波预处理制备的Fe3O4颗粒平均粒径在23 nm左右,饱和磁化强度(Ms)达到61.63 emu/g,具有超顺磁性.同时利用油酸钠和聚乙二醇4000(PEG 4000)的协同作用制得了稳定分散的纳米Fe3O4磁流体,当二者加入量与纳米Fe3O4颗粒质量比均为2.00∶3.48时,制备的纳米Fe3O4磁流体最稳定.  相似文献   

15.
合成Fe2O3纳米粒子复合纤维素膜.采用XRD、TEM和磁力线等多种方法对Fe2O3纳米粒子复合纤维素膜的结构和性能进行表征,并研究Fe2O3纳米粒子复合纤维素膜对亚甲基蓝的降解作用.结果表明:当溶液中H2SO4加量为25.8mol/L、H2O2加量为2.4mol/L时,用5g/L的复合纤维素膜对1.4×10-5 mol/L的亚甲基蓝溶液进行降解,25min内降解率达到100%.  相似文献   

16.
聚吡咯-Fe3O4纳米复合材料的制备与表征及性能   总被引:1,自引:0,他引:1  
用共沉淀方法制备出平均粒径在10 nm左右的Fe3O4纳米粒子,然后在阳离子表面活性剂的引导下采用原位化学氧化聚合法,合成出聚吡咯-Fe3O4纳米复合材料.同时对此纳米复合材料的结构和性能进行了研究.结果表明Fe3O4纳米粒子和聚吡咯之间存在着一定的相互作用,从而有利于吡咯单体在Fe3O4纳米粒子的表面发生聚合反应,进而Fe3O4纳米粒子被聚吡咯所包覆.聚吡咯/Fe3O4纳米复合材料同时具有导电性和磁性,其导电性随着Fe3O4纳米粒子含量的增加先增大后减小,磁性则始终随着Fe3O4纳米粒子含量的增加而增大.  相似文献   

17.
采用蒸汽相水解法,以Fe3O4纳米磁性颗粒为磁核,在其表面包覆一层SiO2来阻止光腐蚀,然后将锐钛矿相纳米氧化钛沉积在Fe3O4/SiO2颗粒表面,从而制得核壳结构的Fe3O4/SiO2/TiO2磁性复合光催化材料。用X射线粉末衍射仪(XRD)、场发射扫描电镜(FE-SEM)、高分辨率透射电子显微镜(HR-TEM)、探针式震动磁强计等手段对所制备的产物的结构、形貌、磁强度性能进行表征。以300W汞灯为光源,用亚甲基蓝和酸性红模拟污水中的有机染料来评价复合光催化剂的性能。结果表明,磁性纳米微球中TiO2的含量越大,其光催化性能越好,含TiO2质量分数50%的F3O4/SiO2/TiO2磁性纳米微球可在180min内降解亚甲基蓝模拟染料废水,降解率达99%,在80min内降解酸性模拟染料废水,降解率达98%。  相似文献   

18.
磁性聚苯乙烯微球的合成与表征   总被引:3,自引:2,他引:1  
采用化学共沉淀法制备Fe3O4纳米粒子,并用聚乙二醇-6000对其表面改性,然后以苯乙烯(St)为单体,过氧化苯甲酰(BPO)为引发剂,采用分散聚合法,制备粒径小,磁含量高的磁性聚苯乙烯微球.X射线衍射(XRD)研究表明,所制备的Fe3O4粒子为面心立方结构.红外光谱测试(FT-IR)表明微球中存在苯乙烯和Fe3O4纳米粒子.透射电镜(TEM)观察表明,所制备的磁性聚苯乙烯微球的粒径约为100 nm.热重(TG)分析得到磁性聚苯乙烯微球磁性物质质量分数为14.5%.振动样品磁强计(VSM)测试结果表明,磁性聚苯乙烯纳米粒子的比饱和磁化强度为14.4 A·m2/kg,具有超顺磁性.  相似文献   

19.
以二价铁盐为原料,利用环氧化物的胶凝或沉淀作用,以乙醇或水作为反应介质,在较低的温度下制备Fe3O4纳米粒子.表征结果表明,以H2O为溶剂可得到粒径在25~83 nm之间粒度分布较宽的Fe3O4纳米颗粒,而以乙醇为介质时,可得到粒度分布窄近单分散Fe3O4纳米粒子.由于该路线在制备纳米氧化物方面具有反应条件温和、工艺简单、原料价廉和易于规模化制备等优点,显示出其具有工业化前景.  相似文献   

20.
纳米结构过渡金属氧化物与石墨烯的复合材料,已被证明是高可逆比容量和优异循环稳定性的新型锂离子电池负极材料之一,其制备工艺尤为重要。以九水硝酸铁、氧化石墨为原料,采用PVP辅助水热法制备Fe_2O_3/石墨烯纳米复合材料,探讨水热反应温度、反应时间条件对Fe_2O_3结构的影响,利用XRD和TEM对样品结构及形貌进行表征。结果表明:水热反应的最佳条件是温度为160℃、时间为12 h,制备得到Fe_2O_3粒径大小约为34砌,结晶度高,且均匀地分散在石墨烯表面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号