首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文中用C表示复平面,C_∞表示扩充的复平面,C(X)为复 Banach 空间X上闭算子的全体。若T∈C(X),我们用D_T记T的定义域,ρ(T),σ(T),ρ_e(T)分别为T的予解集、谱和扩充谱。σ(x,T)是T在x处的局部谱。我们还定义T在x处的扩充局部谱σ_e(x,T)如下设Y为X的闭子空间,如有T(Y∩D_T)Y,则称Y是T的不变子空间记作Y∈I_(nv)(T)。T\Y和T~Y分别表示T在Y上限制及在X/Y上的诱导商算子,设Y∈I_(nv)(T),如果对任何Z∈I_(nv)(T),恒可经σ_(?)(T\Z)(?)σ_e(T\Y)推得ZY,则称Y为T的(e)极大谱  相似文献   

2.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

3.
设X是复Banach空间,C(X)为X上封闭线性算子族,表示封闭复平面C_∞之闭子集族。对T∈C(X),以D(T)我示T之定义域。若X之闭子空间Y使得T[Y∩D(T)]Y。则称Y是T之不变子空间,T之不变子空间Y称为谱极大空间,若对T之另一不变子空间Z,从σ(T|Z)σ(T|Y)可推得ZY。设Y是T之不变子空间,T在Y上的限制算子记作T|Y或T_Y,X关于Y的商空间记作X~Y或X,T在商空间X上诱导的商算子记作T~Y或简记为T。其中  相似文献   

4.
设 C_∞表示扩充复平面,X 表示复 Banach 空间,T 表示以(T)X 为定义域的闭线性算子,由于本文主要研究无界闭线性算子,故将 T 的预解集 P(T)及谱σ(T)均视为 C_∞的子集,并假定 P(T)非空.定义1.设 T 是(T)X 为定义域的有单值扩张性的闭线性算子,T 称为封闭强拟可分解算子,如果对σ(T)的任意有限开复盖.{G_i}_i~=i及 T 的任意谱极大空间 Y,存在  相似文献   

5.
设X,Y是复的Banach空间,在一个上三角算子矩阵Mc=A C0 B∈B(XY)中,A∈B(X),B∈B(Y)是事先给定的,对于任意的C∈B(Y,X),Mc的左(右)Browder谱:lσb(Mc)={λ∈C:Mc)-λB (XY)},B (XY)={T∈Φ (XY):asc(T)<∞},(rσb(Mc)={λ∈C:Mc)-λ■B-(XY)},B-(XY)={T∈Φ-(XY):des(T)<∞}).文中得到lσb(Mc)(rσb(Mc))与lσb(A)∪lσb(B)|rσb(A)∪rσb(B))之间存在有趣的填洞现象,即σ*(A)∪σ*(B)=σ*(Mc)∪W.其中,W是σ*(Mc)的某些洞的并σ*∈{lσb,rσb},并找出洞W的具体位置.  相似文献   

6.
本文给出 T∈B(X)是拟可分解算子的一个等价条件,证明了在拟幂零等价条件下以及在相似条件下,算子的拟可分解性质是遗传的。最后,建立了拟可分解算子在其谱极大空间上的限制成为拟可分解算子的准则。无特殊声明,本文将采用[2]中的符号。定理1 T∈B(X)是拟可分解算子的充要条件是 T 有(AC)谱容度(?)(·)且(?)(·)满足条件  相似文献   

7.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

8.
给出Ka算子的定义,讨论N(Ta)与R(Tb)的关系,得到闭子空间Y在T作用下的象T(Y)成为闭子空间的一些条件,进而证明当T∈Φ (X)时,从R∞(T)到R∞(T)的算子T|R∞(T)是个满射,同时证明当N(T)(∈)R∞ (T)时,T|R∞(T)也是个满射,从而说明当T是Ka算子时,T|R∞(T)是个满射;给出第二Kato谱σ'k(T)的定义,证明了σ'k(T)是C中的非空紧子集,也证明了σ'k(T)=σ'k(T*),并讨论σ'k(T)的一些性质以及σ'k(T)与一些常见的本性谱的关系,说明σd(T)(∈)σ'k(T)(∈)σ(T)、σ'k(T)σB(T)≠(φ)、σk(T)\σ'k(T)≠(φ)、(∈)(T)∩σ'su(T),而且说明当TS=ST时,若TS∈Ka(X),则T∈Ka(X)且S∈Ka(X).  相似文献   

9.
本文是文献[9],[10]的继续。在本文中,我们研究了(AC)算子,可分解算子,谱算子以及它们之间的关系。证明了:(1)若T∈B(X)是(AC)算子,对于每个E,F∈F,有则T是可分解算子。(2)T∈B(X)是谱算子当且仅当T是(AC)算子且满足下述条件:(ⅰ)对每个Borel子集δ,δ∈B,有X_T(δ)=X_T((δ∩δ)⊕此处⊕表示直接和;(ⅱ)对每个x∈X,数集是有界的,此处(3)若是(H)空间,是可分解算子,则下述条件是等价的:(ⅰ)(E)(ⅱ)①从推出(此处P_F是从到_T(F)上直交射影,⊕表示直交和)。它是B.L.Wadhwa定理的新形式。  相似文献   

10.
设T是作用在Hilbert空间H上的有界线性三角算子.σΔ(T)表示T的三角扩张谱,σΔ(T)={λ∈C存在b∈L(C,H)使得Tb0λ(H)/(C)不是三角算子}.本文证明了如果H1,H2…Hn是三角算子T的不变子空间,σ(T|Hi)∩σ(T|Hj)=,i≠j,H=ni=1Hi,则σΔ(T)=∪ni=1σΔ(T|Hi).如果T∈Bn(Ω)是强不可约的,σ(T)=,Ω=,则λ∈σΔ(T)当且仅当存在b∈L(C,H),使得Tb0λ(H)/(C)是强不可约的.本文还给出了一类半三角算子加小的紧算子相似于其三角算子部分.  相似文献   

11.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

12.
本文给出 Banach 空间上闭线性算子的部局谱映射定理以及与其有关的几个结果。我们以 C_(?)表示扩充复平面,X 表示复 Banach 空间,丁表示 X 上以(?)(T)为定义域的闭线性算子,将 T 的预解集ρ(T)和谱σ(T)均视为 C_x 的子集,并且假定ρ(T)非空.当 T 有单值扩张性时,对每个 x∈X,定义 T 关于 x 的局部预解集为  相似文献   

13.
设X,Y,Z皆为拓扑向量空间,C和D分别是Y和Z中的闭凸锥.Z中由D规定的偏序如下:对任意z_1,z_2∈Z,当且仅当z_2-z_1∈D时,z_1≤z_2考虑下述多目标规划问题min f(x);s.t.x∈R(?){x ∈X且g(x)∈C},其中,f:X→Z;g:X→Y.定义1 设(?)∈R,如果(f(?)-D)∩(f(R)\{f(?)}=?,则f(?)称为(1)式的有效点.当f(?)是(1)式的有效点时,称(?)是(1)式的有效解.任给(?)∈R,作映射F(?):X→Z×Y为F(?)(x)=(f(?)-f(x)),g(x)).记H=(D\{0})×C,K(?)={F(?)(x)|x∈X},E(?)=K(?)-c1H.定义2称  相似文献   

14.
研究了Hilbert空间上有界线性算子T的Weyl型定理的判定方法及等价性.根据一致Fredholm指标性质,定义了一种新的谱集2σ(T),通过该谱集和拓扑一致降标集ρτ(T)之间的关系,证明了:算子T满足Browder定理当且仅当ρτ(T)bρ(T)∪1σ(T)∪2σ(T);T满足Weyl定理当且仅当0π0(T)ρτ(T)bρ(T)∪1σ(T)∪2σ(T),其中bρ(T)={λ∈C:T-λI为Browder算子},1σ(T)为本质逼近点谱的一种变化,0π0(T)为谱集中孤立的有限重的特征值的全体;算子T与T*均满足a-Browder定理当且仅当ρτ(T)aρb(T)∪2σ(T)∪intSσF(T)∪{λ∈C:des(T-λI)∞},其中aρb(T)={λ∈C:T-λI为上半Fredholm算子且有有限的升标},SσF(T)和des(T)分别表示算子T的半Fredholm谱以及降标.  相似文献   

15.
设T(X)是X上的全变换半群且Y是X的子集,令F(X,Y)={α∈T(X)|Xα■Yα■Y}.当|Y|=n≥4,对2≤k≤n-1,研究了半群F(X,Y)的理想Q(F,k)={α∈F(X,Y)||im(α)|≤k},得到了它的极大正则子半带的完全分类.  相似文献   

16.
令α_1,…,α_n是Banach空间X上可交换算子组。在本文中,我们引入强解析可分解交换算子组概念。α=(α_1,…,α_n)称为强解析可分解的,如果对α的任意谱极大空间Y,α_Y=(α_1|Y,…,α_n\Y)是解析可分解的。我们的主要结果是: 定理。α=(α_1,…,α_n)是强解析可分解的,当且仅当对α的任意谱极大空间Y,α~Y=(a_1~Y,…,α_n~Y)是强解析可分解的。  相似文献   

17.
设 T是作用在 Hilbert空间 H上的有界线性三角算子。︴Δ(T)表示 T的三角扩张谱 ,︴Δ(T) ={λ∈C:存在 b∈L(C,H)使得 T b0λHC不是三角算子 }。本文证明了如果 H1,H2 …Hn 是三角算子 T的不变子空间 ,︴(T|Hi)∩︴(T|Hj) = ,i≠ j,H= ni=1Hi,则 ︴Δ(T) =∪ni=1︴Δ(T|Hi)。如果 T∈Bn()是强不可约的 ,︴(T) =, = ,则 λ∈ ︴Δ(T)当且仅当存在 b∈ L(C,H) ,使得T b0λHC是强不可约的。本文还给出了一类半三角算子加小的紧算子相似于其三角算子部分。  相似文献   

18.
设 X 为复的 Banach 空间,L(X)为 X 上的有界线性算子构成的 Banach 代数,F为L(X)到L(X)的线性算子.Matj(?)z Omladi(?)在[1]中证明了下面的定理.定理设 F:L(X)→L(X)是线性、双射且在弱算子拓扑下连续的映射,F 和 F~(-1)均保持一秩投影,则或者(1)存在一个有界的双射线性算子 U:X→X,使 F(A)=UAU~(-1),或者(2)存在一个有界的双射线性算子 U:X′→X,使 F(A)=UA′U~(-1),在此情形下 X 是自反的.下面给出此定理的一个简单证明,并对其条件进行改善,推广该定理.本文中 X、Y 表示 Banach 空间,X′、Y′分别表示它们的对偶空间,任意 x∈X,f∈X′,x(?)f 表示如下定义的 X 上的一秩算子,任意 y∈x,(x(?)f)(3y)=f(y)x.以下两个引理均设 F 为 L(X)到 L(Y)的保持一秩投影的线性映射,且 F 限制在 L(X)中的一秩算子组成的集合上为单射.引理1 若 x、y∈X 为线性无关向量,f∈X′为非零函数且 f(x)=f(y)=1,则存在 u、  相似文献   

19.
设T(X)和O(X)分别是X上的全变换半群和保序全变换半群,Y是X的非空子集,令F(X,Y)={α∈T(X):Xα?Yα?Y},OF(X,Y)=O(X)∩F(X,Y).当Y=n≥4时,对任意的2≤k≤n-2,考虑半群Q(k)={α∈OF(X,Y):Im(α)≤k}的极大正则子半带的结构,利用Miller-Clifford定理,证明了半群Q(k)的极大正则子半带有且仅有两类:A(α)=Q(k-1)∪(J(k)\L_α),α∈J(k);B(β)=Q(k-1)∪(J(k)\R_β),β∈N(k).  相似文献   

20.
算子矩阵:单值扩张性与Browder谱   总被引:1,自引:0,他引:1  
设X,Y是给定的Banach空间,对A∈B(X),B∈B(Y),C∈B(Y,X),以MC记XY上的算子{A C/0 B}.利用局部谱理论的工具给出关于A,B成立σ*(Mc)=σ*(A)∪σ*(B)(σ*∈{αb,σw,σD})的一些充分条件,同时给出例子说明所给的充分条件不同于Djordjevic S.V.,Zguitti H.和Zhang Y.N.等人所给的充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号