首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 367 毫秒
1.
介绍了Sol-Gel法制备BaPbO3 导电微粉的方法 ,研究了BaPbO3 凝胶热处理过程中的反应机理 ,确定了钙钛矿结构BaPbO3 的合成温度 .测定了其导电率 ,并用Sol-Gel法在较低温度下合成了BaPbO3 超微粉  相似文献   

2.
SrTiO_3基电容-压敏复合功能陶瓷材料具有优良性能.本文通过草酸盐化学共沉淀法制备(Sr,Ca)TiO3陶瓷的超微细粉末;对不同烧成温度、中温氧化温度和氧化时间及不同烧成气氛对材料的介电性能的影响作了综合讨论与分析.  相似文献   

3.
SrTiO3基电容-压敏复合功能陶瓷材料具有优良性能,本文通过草酸盐化学共沉淀法制备(Sr,Ca)TiO3陶瓷的超微细粉末,对不同烧成温度,中温氧化温度和氧化时间及不同烧成气氛对材料的介电性能的影响作了综合讨论与分析。  相似文献   

4.
设计了一套可用于气氛环境下介电温度特性的测试系统,并将气氛环境引入到测试过程中,从而实现了不同气氛环境下(氧化、中性或还原性气氛)对电子材料介电性能参数的测试测试结果表明,电子材料的电学性能参数受到测试气氛的影响和作用,为研究材料内部复杂的缺陷结构和极化机制提供了一种直接有效的测试手段实验证明,测试系统运行可靠,数据精确  相似文献   

5.
采用了不同的施主掺杂方式,通过过剩施主的一次和二次掺杂材料的室温电阻率和PTCR效应的研究,从缺陷化学的角度,讨论了引入方式与施、受主相互补偿机制的关系和对材料电学性能的影响。  相似文献   

6.
分析La1- x Srx MnO3- δ材料在氧化学配比、氧过量和氧缺乏条件下的缺陷结构和它们的导电行为.对于不同的δ,依材料所形成的缺陷不同,表现出电子导电和离子导电.一方面,在La1- x Srx MnO3- δ材料中由于Sr2+ 替代La3+ 使得锰变价,造成在材料中形成电子空位(或掺杂能级),因此材料出现电子导电.另一方面,在氧缺乏的条件下,形成的氧空位在高温下具有较大的可动性,能为氧离子的传输提供通道,使材料具有氧离子导电性.因而La1- x Srx MnO3- δ在不同的氧环境下可具有电子和电子-离子混合导电能力.  相似文献   

7.
金红石单晶体经中子辐照后,不仅由无色透明变为深兰色,而且导电特性发生很大变化,且由高绝缘材料变为n型半导体,作者分别在低温、室温及高温下,研究了样品电阻随温度的变化关系,并在空气和真空气氛下,对比研究了气氛对辐照后样品导电特性的影响。结果表明,金红石晶体经中子辐照后,在低温下具有典型的半导体导电特性;在高温下于空气中退火,样品会被逐渐氧化,最后变为无色的绝缘体;在10^-4Pa高真空气氛中退火,样品表现出点缺陷导电行为,且缺陷离子具有两个不同的激发能级(0.06eV和0.12eV),分别对应子H^ 和Ti^3 ,且在整个过程中没有发现样品被氧化。  相似文献   

8.
以镁砂细粉、Fe粉、Fe2O3粉和α-Al2O3粉为原料,采用原位合成法制备方镁石-铁铝尖晶石材料.不同气氛下烧成试验显示N2气氛是合成铁铝尖晶石的最佳气氛.通过XRD和SEM分析在N2气氛中不同热处理温度制备铁铝尖晶石材料的相组成及其显微结构,研究了烧结温度和铁加入量对试样烧结性能的影响.结果表明,试样在N2气氛中于1450、1500、1550℃下保温3h处理后都能原位合成出方镁石-铁铝尖晶石材料;烧结温度的提高有利于铁铝尖晶石的发育和试样烧结性能的提高;铁加入量为10%时烧结性能最佳.  相似文献   

9.
在不同的退火气氛下,采用金属有机物分解法在(111)Pt/Ti/SiO2/Si衬底上制备了SrTiO3薄膜材料,并对其结构和电学性能进行了研究。X射线衍射结果显示SrTiO3薄膜都呈现多晶立方钙钛矿结构。对比不同气氛下制备出的SrTiO3样品电学测量结果,发现在氧气氛中退火后,样品具有较低的漏电流和较好的介电性能,这可能是由于氧气氛中退火减少了SrTiO3薄膜内氧空位的浓度引起的。  相似文献   

10.
以纳米η-Al2O3与工业铬绿为原料,采用固相烧结的方法制备Al2O3-Cr2O3固溶体.以聚乙烯醇为结合剂,经过冷等静压成型后,分别以埋碳和空气两种气氛在1400~1600℃常压烧结.研究不同气氛、不同温度下试样的性能、显微结构和烧结动力学.在烧结过程中,随温度升高,两种不同气氛的Al2O3-Cr2O3固溶体晶粒生长指数减小,晶粒生长活化能下降.埋碳气氛下Al2O3-Cr2O3固溶体平均晶粒生长指数为1.763,晶粒生长主要受晶界的曲率和一小部分体积扩散控制;空气气氛下Al2O3-Cr2O3固溶体平均晶粒生长指数为3.454,晶粒生长主要受离子随机越过晶界和体积扩散控制.对比晶粒生长活化能发现,空气气氛更有利于Al2O3-Cr2O3固溶体晶粒的生长发育,但当温度过高时应考虑CrO3的挥发对晶粒生长的影响.  相似文献   

11.
利用水基化学包覆法在纳米钛酸钡粉体包覆氧化铝、二氧化硅和氧化锌等物质,并通过两段式烧结法制备了平均晶粒尺寸120 nm的超细晶钛酸钡基储能陶瓷.包覆层的存在抑制了晶粒生长和异常晶粒长大,同时将陶瓷的交流击穿场强大幅提高至150 kV·cm-1以上,储能密度达到0.829 J·cm-3.电子能量损失谱显示,包覆掺杂的元素明显偏聚于陶瓷晶界,形成具有芯-壳结构的晶粒.而高温阻抗谱的测试和拟合结果则进一步解释了陶瓷性能改善的原因.虽然此超细晶陶瓷的储能密度并不十分突出,但其晶粒细小均匀、烧结温度低,因而可用于制备多层陶瓷电容器,从而大幅提高储能密度,这是常见的储能陶瓷无法实现的.  相似文献   

12.
用高温平衡电导率及正电子湮没寿命谱量测研究了钙离子的两种置换类型对钛酸钡缺陷结构、电性能的影响及机理。结果表明:等价置换能够改变钛酸钡氧化、还原反应生成焓,受主置换对钛酸钡电导率曲线、正电子淹没寿命谱均有显著影响;少量受主置换可以使在强还原气氛下烧结钛酸钢材料的绝缘电阻提高近10个数量级。该材料可做为进一步研究贱金属电极独石电容器的基础。  相似文献   

13.
制得铅酸钡(BaPbO3)导电陶瓷,它具有象金属一样的导电性,而且还具有正温度系数(PTC)特性. 本文主要研究BaPbO3 导电陶瓷的导电性和导电机制  相似文献   

14.
 制备了Nd(OH)3,Co3O4和Nb2O5纳米粒子以及Nd(OH)3-Co3O4-Nb2O5纳米复合掺杂和传统复合掺杂BaTiO3基陶瓷,研究了掺杂剂的粒径对BaTiO3基陶瓷的微观形貌和介电性能的影响,并对纳米掺杂和传统掺杂BaTiO3基陶瓷的性能进行了比较.结果表明,掺杂剂的粒度对BaTiO3基介电陶瓷的微观形貌和介电性能有较明显的影响,特别是纳米复合氧化物掺杂能够促进烧结中晶粒"芯-壳"结构的形成,能有效地抑制晶粒长大并形成细晶结构,从而显著地降低烧结温度,提高介电常数、降低介电损耗,改善BaTiO3基陶瓷的温度稳定性.  相似文献   

15.
以聚丙烯(PP)为基材与高介电常数的BaTiO3复合而成的BaTiO3/PP复合膜是一种电性能优异的高频、交频电介质绝缘材料,它具有介质损耗小、介电常数不随频率而变化、防潮性能优良及价廉等优点.通过BaTiO3/PP复合膜的试制,研究了填料BaTiO3的表面处理,含量及介电常数等因素与BaTiO3/PP复合膜电性能间的关系.  相似文献   

16.
Mn掺杂对BaTiO3体系介电性能的影响   总被引:1,自引:0,他引:1  
采用氧化物混合方法制备以BaTiO3为基础的X7R陶瓷材料。研究了添加剂Mn的添加量对体系介电性能的影响,并对微观结构进行分析。Mn的加入起到了助熔剂的作用,提高陶瓷的介电常数。Mn离子在2+和3+之间变价,可以减少缺陷的数量,因而减小tanδ,满足EIAX7R标准的要求。实验表明,添加0.046wt%MnCO3的BaTiO3体系,具有最优的介电性能。其主要工艺条件和性能参数为:烧结温度1240℃保温6h,在1kHz下ε≈5800,tanδ≤1.5%,介电常数温度变化率-15%〈△ε/ε〈15%,绝缘电阻率:ρv≥1×10^12Ω.cm。  相似文献   

17.
使用铝电极的BaPbO3陶瓷的PTCR效应   总被引:1,自引:1,他引:0  
为了研究开发具有低电阻率和正电阻温度系数(PTCR)的高居里点陶瓷材料,以BaCO3和PbO为原料制备了一组La掺杂的陶瓷材料.实验发现,烧结的陶瓷样品在室温下具有极低的电阻率,且呈现出和金属导体一样的电导体特征;使用铝电极的BaPbO,基陶瓷体表现出PTCR特性,并且这种特性可以通过调整掺杂物的量进行改善.利用扫描电子显微镜和透射电子显微镜对陶瓷的微观结构进行了表征.微观结构分析表明,一薄层的烧结陶瓷表层为具有金属性质的正交结构BaPbO,纳米相,并由此使其表现出极低的电阻率;具有PTCR特性的陶瓷体内部是由具有畴结构的铁电相组成,所以除去烧结陶瓷表层后,喷镀铝电极的陶瓷体表现出正电阻温度效应.  相似文献   

18.
研究了掺Mn对LaCrO3材料晶体结构和导电性能的影响及Mn离子的作用机制 .实验发现 :①LaCr1 -xMnxO3(0≤x≤ 1 ) 为正交钙钛矿结构 ,且随Mn含量的增多 ,材料晶格面间距逐渐增大 .②LaCr1 -xMnxO3固溶体在x =0 .1时电阻率异常增高 3个数量级 ,且随x的增大 ,电阻率逐渐下降 .应用缺陷化学理论对LaCrO3中掺Mn的电荷补偿过程进行了分析 ,揭示了过渡金属Mn对LaCrO3固溶体导电性能的作用机制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号