首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
本文利用有限维正交投影方法证明了下述边值问题u_j1-a_j(u_j)_(xx)+σ_ju_j+f_j(t,x,u)=g_j(t,x),(t,X)∈G=(0,π)×(0,π),-α_(j1)u_(jx)+β_(j1)u_(j)|_(x=0)=0α_(j2)u_(jx)+β_(j2)u_(j)|_(x=π)=0 j=1,…,n在假设条件(4)-(6)成立时,于少有一周期解u_j∈W_1~(2,1)(G)。当a_j(u_j)=u_j时,文[7]讨论了此种情形,但是我们得到的结果u_j∈w_2~2(G)且u_(jx)∈W_1~(2,1)(G),比文[7]的结果强得多。  相似文献   

2.
仿照文[1]中的方法,我们可将平面区域D上满足一定条件的一阶非线性一致椭圆型方程组 (1.1) φ_k(x,y,u_1,…,u_(2n),u_(1x),u_(1y),…,u_(2nx),u_(2ny))=0,k=1,…,2n 转化为如下的一阶非线性复形式的方程组 (1.2) w_(k(?))=F_k(z,w_1,…,w_n,w_(1z),…,w_(nz)),k=1,…,n, 其中z=x iy,w_k(z)=u_k(z) iu_(k n)(z),k=1,…,n。下面,令D是z平面上的N 1(N≥0)连通区域,其边界(0<μ<1)。不失一般性,可认为D是单位圆内的N 1  相似文献   

3.
§1 引言物理力学与技术中的許多問題,引导出非綫性积分方程的研究,其中很大部分問題所引导出的是Hammerstein型积分方程φ(x)=integral from n=G k(x,y)f[y,ξ(y)]dy (1.1)及Hammerstein型积分方程組 其中G是有限維空間某集合,核函数k(x,y);k_1(x,y),…,k_n(x,y)都是定义在x∈G,y∈G上的两变数函数。f(x,u)是定义在x∈G,|u|<∞上函数,f_1[x,u_1,…,u_n],f_2(x,u_1…u_n]…f_n[x,u_1…u_n]是定义  相似文献   

4.
本文研究了非齐次非线性薛定谔方程爆破解的存在性.首先构造了一类不变集,然后应用最佳Gagliardo-Nirenberg型不等式以及仔细的分析证明了对任意大的μ,存在u_0∈H~1,使得E(u0)=μ,并且以u_0为初值的解u(t, x)在有限时间内爆破,该结果改进了文献[1]中的结果.  相似文献   

5.
本文研究下列非线性 Schr dinger 方程 i( u)/( t)-△u+K|u|~pu=0 [0.∞)×Ω u(0,x)=u_0(x) Ω (1) u(t,x)| =0 (0,∞)×Ω其中Ω是 R~R 中区域.众所周知.方程(1)的解的整体解存在与否取决于 p.n.Ω及 u_0.在文献[1]中 Y.Tsutsumi 研究了当 n≥3.p 为偶数时,在小初值情形下方程(1)的外问题整  相似文献   

6.
本文讨论耗散方程的混合问题{u-(tt)-△u-μ△u_t=H(▽u,D▽u) (t,x)∈(0,T)×Ωu(0,x)=f(x),u_t(0,x)=g(x) ■通过适当的函数变换,运用凸性方法证明了当H(▽u,D▽u)≥ρu_t~2+q sum from i=1 to n u_(x_1)~2++μ(?)u_t sum from i=1 to n u_(x_i)~2+u(q-2)sum from i=1 to m u_(x_1)u_(tx_1)(这里ρ>0,q>0)及integral from Ωe~(qf(x))g(x)dx>0时,所考虑混合问题的光滑解在有限时间内爆破.  相似文献   

7.
§1 引言 在文[1]中,已将一定条件下的二阶一致椭圆型方程组(1.1) Φ_j(x,y,u_1,u_2,u_(1X),u_(1y),u_(2x),u_(2y),u_(1xx),u_(1xy),u_(1yy),u_(2xx),u_(2xy),u_(2yy))=0,j=1,2转化为形如下的二阶一致椭圆型复方程  相似文献   

8.
文献[1]指出:“关于Orlicz空间中列紧集的判别法,近二十年来未出现理想的成果”。我们知道,有关这方面的著名定理——柯尔莫果洛夫判别法与黎茨判别法,都仅适用于M(u)满足Δ_2条件的情形,而对一般的情形,仅有文献[2]巾的一个“对偶”形式的判别法。本文借助文献[3]中的一个范数公式等工具,给出Orlicz空间中列紧集的两个充要条件(定理1与定理2)。下文所用记号,全部沿自文献[3]。定理1.(?)L_M~*列紧(?)对任何ε>0,存在{u_1(x),u_2(x),…u_N(x)}(?)L_M~*,使对任何u(x)∈(?),必有u_i(x)∈{u_1(x),u_2(x),…,u_N(x)}满足  相似文献   

9.
设R~n为n维空间,f(t,x,u)是R~+×R~(n+1)上的实连续函数。本文讨论 u_u-△u+λu_1+μu=f(t,x,u),λ,u>0 (1) u(0,x)=u_0(x),u_1(0,x)=u_1(x).x∈R~n (2)的整体解的存在性与唯一性。定义x_s及|||·|||_s为下列空间及其相应的范数  相似文献   

10.
关于某类非线性发展方程的弱解   总被引:3,自引:0,他引:3  
本文讨论如下非线性发展方程的初值问题 u_1 (f(u)) u-u_(xx)-u_(xxt)=0 (x,t)∈Ω×[0,T] u(x,0)=u_0(x) x∈Ω给出在某类Sobolev空间弱解的定义,利用Galerkin方法证明了该问题弱解的存在性,并用能量技巧证明了问题解的唯一性.  相似文献   

11.
本文考虑下列超线性椭圆型方程组-△u_i=f_i(x)g_i(u_1,u_2…,u_n)x∈R~n i=1,2,…,n 的整体极小解的存在性。所谓极小极是指 u=(u_1,u_2,…,u_n),u_i∈C_(loc)~(2+α)(R~n),sup(1+|x|)~(n-2)|u_i∞|<+∞且满足对任何φ∈C_0~∞(R~n),∫R~n▽u_i▽φdx=integral from x∈R~n R_nf_i(x)g_i(u_1,u_2,…u_n)φdx。本文用拓扑度方法证明了,在 f_i(x)、g_i(u)满足一定条件下,方程组存在正的整体极小解。  相似文献   

12.
本文对文[1]作如下推广:文[1]关于α(x)和,f(x)是在α(x),f(x)∈L_p(G),p=n/(1-λ)条件下([1]中误为p=n/(2-λ))得到一系列结果,本文在α(x),f(x)∈L_p(G),  相似文献   

13.
一类半线性抛物型方程解的blow—up   总被引:2,自引:2,他引:0  
设Ω R”的有界区域,u(x,t)是问题:u_t-△u=f(u)在Ω×(0,T),β u/ v+u=g(u),β>0,在Ω×(0,T),u(x,0)=u_0(x)的古典解此地△是n维的Laplac, u/ v记为u在Ω的外法向,利用凸性方法证明了上述问题的解在有限时间内变无穷,其中f(u),g(u)和u_0(x)满足以下不等式集合的任一个: (d_1) u_0(x)≥0,f(u)≥0,g(u)≥0,u_0(x) 0,△u_0+f(u)>0,uf'(u)-(l-1)f(u)≥0,ug'(g)-(l-1)g(u)+(l-2)u≥0,l>2。 (d_2) u_0(x)≥0,f(u)≥0,g(u)≥0,△(u_0)+f(u_0)>0,f'(u)-αf(u)≥0,g'(u)-αg(u)+αu-1≥0,α≥0。 (d_3) u_0f(u_0)≥0,u_0(x) 0,uf'(u)-(2α+1)f(u)=0, 对于任意实数W,integral from n=0 to W[(z(g(z)+2α)-(2α+1)g(z)]dz≥0,α>0,∫Ω(integral from n=0 to u_0 1/β(g(z)-z)dz)dx-1/2∫Ω|▽u_0|~2dx>0。  相似文献   

14.
利用函数f(x)在积分区间[a,b]端点的函数值及各阶导数值,对函数f(x)在[a,b]上的定积分进行估计,进而得到若干积分不等式.主要结果如下:若函数f(x)是[a,b]上n+1次可微函数,且|f(n+1)(x)|≤M(M>0),则|∫baf(x)dx-x∑k=0(b-a)k+1/2k+1(k+1)![f(k)(a)+(-1)kf(b)]|≤1/2n+1(n+2)!M(b-a)n+2  相似文献   

15.
在文[2]的基础上,我们考虑非自治非线性系统: (dx/dt)=G(t,x)F(x)(·)这里G(t,x)为n×n矩阵,F(x)为n维向量。运用向量ляпунов函数得到(·)的稳定性判据。改进了文[1],[2]的部分结果。  相似文献   

16.
利用函数f(x)在积分区间[n,b]端点的函数值及各阶导数值,对函数f(x)在[α,b]上的定积分进行估计,进而得到若干积分不等式.主要结果如下:若函数f(x)是[α,b]上n 1次可微函数,且│f^(n 1)(x)│≤M(M>0),则│∫^b α(x)dx-n∑k=0 (b-α)^k 1/2^k 1(k 1)! [f^(k) (α) (-1)^k f^(k)(b)]│≤1/2^n 1(n 2)! M(b-α)^n 2.  相似文献   

17.
该文讨论了如下一类非线性抛物线方程组解的性质{(e)u/(e)t=d1△u-a11u+∫Ωk(ξ)v(ξ,t)dξ (e)v/(e)t=d2△v-a22v+um (x,t)∈Ω×(0,∞) u(x,0)=u0(x) v(x,0)=v0(x) x∈Ω (1) B[u]=a(x)(e)u/(e)n+β(x)u=0 B[v]=a(x)(e)v/(e)n+β(x)v=0 x∈(e)Ω 利用微分方程上、下解方法证明了初值适当小时,方程存在整体解;初值适当大时,解在有限时间上爆破,推广了文献[1]的结果.  相似文献   

18.
关于结点组{x_中}_1~(民+1)C[-1,1],我们考虑2n+1阶的Hermite插值过程H_(2n+1)(f,x):C_([-1,1]~1→C_[-1,1]~1。众所周知,并非对任何函数f(x)∈C_[-1,1]~1,都存在在[-1,1]上一致地成立。 现在取{x_k=cos[(2k-1)π/(2n+1)]}_1~(n+1),此时的2n+1阶Hermite插值过程H_(2n+1)(f,x),有,‖H′_(2n+1)(f,x)‖=O(n‖f′‖),其中‖f′‖=(?)|f′(x)|,因此对于函数f(x)∈C_([-1,1]~2,(1)式在[-1,1]上都一致地成立。记  相似文献   

19.
设x=(x_1,x_2,…,x_n)为R~n中有界区域G内的点,G的边界(?)G:x_i=x_i(S_1,…,S_(n-1)),i=1,…,n为光滑闭曲面,其外法线方向为(?),我们考虑泛函 J_n=integral from t_1 to t_2 integral from G(F(x,t,u,u_x,u_t)dxdt+integral from t_1 to t_2 integral from (?)G(f(s,t,u,u_s)dsdt (1)的局部极值问题,这里u=u(x,t),而u_x=(u_(x_1)…,u_(x_n)),u_s=(u_(s_1),…,u_(s_(n-1))),u~(s_j)=sum from i=1 to n ((?)u/(?)x_i(?)x_i/(?)s_j,j=1,…,n-1,又记区域V=(?)×[t_1,t_2],并设函数u(x,t)∈c~2(V),F和f分别在V和(?)G×[t_1,t_2]上二次连续可微。  相似文献   

20.
文献[1]针对多种情况,证明了walch-Fourier级数和级数∞∑n=0nβaγn(f)ψγn(x)的绝对收敛性.本文对此进一步讨论,开拓了文献[1]的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号