首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5161篇
  免费   324篇
  国内免费   404篇
系统科学   36篇
丛书文集   119篇
教育与普及   21篇
理论与方法论   9篇
现状及发展   32篇
综合类   5672篇
  2024年   16篇
  2023年   89篇
  2022年   128篇
  2021年   132篇
  2020年   115篇
  2019年   95篇
  2018年   104篇
  2017年   176篇
  2016年   186篇
  2015年   234篇
  2014年   293篇
  2013年   200篇
  2012年   341篇
  2011年   368篇
  2010年   212篇
  2009年   272篇
  2008年   210篇
  2007年   294篇
  2006年   273篇
  2005年   229篇
  2004年   213篇
  2003年   180篇
  2002年   147篇
  2001年   143篇
  2000年   163篇
  1999年   141篇
  1998年   122篇
  1997年   99篇
  1996年   100篇
  1995年   99篇
  1994年   87篇
  1993年   86篇
  1992年   73篇
  1991年   57篇
  1990年   47篇
  1989年   62篇
  1988年   35篇
  1987年   33篇
  1986年   26篇
  1985年   9篇
排序方式: 共有5889条查询结果,搜索用时 15 毫秒
181.
Boron is added into single crystal superalloys as a micro-alloying element to strengthen low angle grain boundaries.However,systematic investigations on the effect of boron on microstructures of single crystal superalloys are limitedly reported.The effect of boron on as-cast and heat-treated microstructures was investigated in two experimental Ni-based single crystal superalloys containing 3 wt% Re.The current results indicated that the volume fraction of(γ+γ′)eutectic and M_3B_2 borides was evidently increased,while the number of micropores was evidently decreased with the addition of 0.02 wt% boron.The(γ+γ′)eutectic could not be dissolved completely due to the lower incipient melting temperature caused by the formation of M_3B_2 borides.Meanwhile,the M_3B_2 borides were found to be enriched with indispensable strengthening elements Cr,Mo,W and Re,and this may lower the strengthening effect and cause stress concentration during high temperature creep.  相似文献   
182.
In order to comprehensively understand the forming mechanism of abnormal phases solidified in a nickel-base cast superalloy with additives of tungsten and molybdenum, the coupling effects of W and Mo on the microstructure and stress-rupture properties were investigated in this paper. The results indicated that the precipitation of primary α-(W, Mo) phase depended tremendously on the amount of W and Mo addition. When the total amount of W and Mo was greater than 5.79 at%, α-(W, Mo) phase became easily precipitated in the alloy.With increasing of Mo/W ratio, the dendrite-like α-(W, Mo) phases were apt to convert into small bars or blockylike phases at the vicinities of γ′/γ eutectic. The morphological changes of α-(W, Mo) phase can be interpreted as the non-equilibrium solidification of W and Mo in the alloy. Since the large sized α-(W, Mo) phase has detrimental effects on stress-rupture properties in as-cast conditions, secondary cracks may mainly initiate at and then propagate along the interfaces of brittle phases and soft matrix. During exposing at 1100 ℃ for 1000 h, the α-(W, Mo) phases transformed gradually into bigger and harder M_6C carbide, which results in decreasing of stress-rupture properties of the alloy. Finally, the alloy with an addition of 14W-1Mo(wt%) maintained the longest stress lives at high temperatures and therefore it revealed the best microstructure stability after 1100 ℃/1000 h thermal exposure.  相似文献   
183.
The microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe high strength titanium alloy sheets prepared by unidirectional cold rolling and two-step cross cold rolling were investigated. Results showed that the β phase grains were refined significantly by cold rolling followed by solution treatment for a short time.Compared to unidirectional cold rolling, the short time solution treatment after two-step cross rolling could significantly reduce the non-uniformity of the microstructure of the alloy sheets. After aging treatment at 550 ℃,the anisotropy of the mechanical properties still existed in the unidirectional rolled sheets, and the tensile strength was highest along the rolling direction. After solution and aging treatment, the anisotropy of the mechanical properties of the two-step cross rolling process sheet was not obvious than unidirectional cold rolling,and alloy had good strength and plasticity matching.  相似文献   
184.
基于非协调EQrot1元和零阶R-T元针对伪双曲方程,建立了一个自然满足B-B条件的非协调低阶混合元逼近格式.借助单元插值算子的特殊性质、导数转移技巧和插值后处理技术,在半离散格式下给出了原始变量在H1-模和中间变量在L2-模意义下的O(h2)阶超逼近性与整体超收敛结果.同时,对于一个二阶全离散格式得到了原始变量H1-模的O(h2+τ2)超逼近性和中间变量L2-模的O(h+τ2)最优误差估计.  相似文献   
185.
选择来源于极端嗜热菌Thermosipho melanesiensis(DSM12029)的普鲁兰酶基因,以购自德国菌种保藏中心的基因组为模板,扩增出普鲁兰酶基因TM-pulA;利用酶切酶连构建了重组质粒pET21a-TM-pulA;转入大肠杆菌Rosetta(DE3)菌株中诱导表达并经纯化后,进行了水解产物分析和酶学性质测定.结果显示:TM-pulA为Ⅰ型普鲁兰酶,最适pH为5.8;最适温度是80℃;70℃下半衰期为4.75 h;Mn~(2+)、Co~(2+)、AL~(3+)、Fe~(3+)、SDS及EDTA对其酶活有不同程度的抑制作用;该酶的K_m、V_(max)、K_(cat)及K_(cat)/Km值分别为4.68 g·L~(-1)、0.0085 mmol·L~(-1)·s~(-1)、71.18 s~(-1)、15.21 L·g~(-1)·s~(-1).  相似文献   
186.
通过层流冷却及卷取过程模拟实验和实验室热轧实验研究了冷却工艺参数对Ti微合金化汽车大梁钢510L组织性能的影响规律,并在生产现场进行了工业试制.结果表明,大冷速有利于弥散细小的TiC粒子析出,冷速和终冷温度对实验钢强度的影响是细晶强化、析出强化和相变强化共同作用的结果,N含量显著影响Ti的析出强化效果,在冶炼时应严格控制钢中的N含量,否则将对钢板的性能产生较大的影响.实现了低成本Ti微合金化汽车大梁钢510L的批量稳定生产.  相似文献   
187.
采用谐振腔微扰法测定了不同粒度的硼铁矿在频率为2.45GHz和温度为20~800℃的介电特性,并测定其在微波场下的升温特征.结果表明:随着矿样粒度的减小,填充层空隙率降低,其介电特性增强,微波场中矿样的升温速率加快.当温度高于200℃时,矿样发生热分解产生大量微空隙而增大了空隙率,矿样的介电特性呈下降趋势,使得微波加热过程中矿样的升温速率降低.粒度对硼铁矿介电特性和升温特征的影响研究为微波在冶金领域中的应用及节约能耗提供理论依据.  相似文献   
188.
铝锡轴承合金对大型载重汽车、坦克、高速汽车、拖拉机等的高速高压柴油机的发展有重要的意义。提高铝锡合金的耐摩擦磨损性能可节省大量能源并延长零件的使用寿命,如何取得具有优良的耐摩擦磨损的铝锡合金成为研究的重点。本文介绍了提高铝锡合金的耐摩擦磨损性能的措施及其影响因素,总结铝锡合金中锡元素含量改变、合金元素的添加、热处理与制备工艺的改变对铝锡合金的显微组织以及耐摩擦磨损性能的影响。  相似文献   
189.
【目的】选育优良的产酸性木聚糖酶的微生物,考察酸性木聚糖酶的酶学性质(尤其是pH值为4.0),为实现纤维素乙醇低成本清洁生产打下基础。【方法】从广西大学农场采集土壤,富集后经产酸性木聚糖酶的培养,比较酸性木聚糖酶酶活力,选育酸性木聚糖酶高产菌株,鉴定菌种,分析酶学性质。【结果】筛选出产酸性木聚糖酶酶活力较高的菌株XYW5。扩增菌株XYW5的ITS rDNA序列,经测序分析比对,将其初步鉴定为日本曲霉Aspergillus japonicus XYW5。菌株XYW5产酸性木聚糖酶和酸性木糖苷酶的酶活力最高分别达(26. 26±0. 97)U/mL和(0.63±0.02) U/mL,比活力分别为(85.50±0.63) U/mg和(1.80±0.01) U/mg;其酸性木聚糖酶最适温度和最适pH值分别为65℃和6.5,酸性木糖苷酶最适温度和最适pH值分别为70℃和4.5;酸性木聚糖酶兼有酸性CMCase酶活力,达到8.54 U/mL。【结论】菌株XYW5所产的酸性木聚糖酶具有开发成为优良工业酸性木聚糖酶的潜力。  相似文献   
190.
选取两种方法对化工污泥进行改性并研究改性后的污泥添加量对污泥水煤浆(S-CWS)成浆性、流变性和燃烧性的影响,从而获得制备高浓度污泥水煤浆的工艺参数.结果表明:选用Na OH对污泥进行改性制备出的污泥水煤浆成浆性较好;改性污泥添加量在10%~20%,可以得到成浆性良好的污泥水煤浆;添加改性污泥的污泥水煤浆较普通水煤浆的燃烧性能增加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号