首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对货物列车在曲线上因超速引起的脱轨问题,根据列车-轨道系统空间振动计算模型及列车脱轨能量随机分析理论,采用轮轨位移衔接条件并考虑轮轨"游间"的影响,提出了货物列车超速条件下的脱轨过程计算方法.根据该方法,对不同曲线轨道形位等工况下的货物列车脱轨过程进行了计算,分析了列车脱轨过程中的轮轨接触状态、轮轨相对位置及几何尺寸.研究结果表明,随着曲线半径的增大,在列车脱轨瞬间,转向架摇头角及转向架与钢轨横向相对位移逐渐减小,最大值分别为5.82°和78.1 mm.该结果可为研发机械式的列车脱轨检测装置提供理论依据和基础数据,进而确保该检测装置能在列车脱轨掉道的第一时间检测到位,及时停车.  相似文献   

2.
基于列车-轨道系统空间振动分析理论,考虑洪涝灾害的影响,建立洪涝灾害条件下列车-轨道系统空间振动分析模型。根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立此系统空间振动矩阵方程。运用列车脱轨能量随机分析理论,提出洪涝灾害条件下列车脱轨全过程计算方法,分别对该条件下直线和曲线路段列车脱轨全过程进行计算和分析。研究结果表明:洪涝灾害引起的货物列车在直线和曲线路段脱轨时转向架摇头角分别为0.20°和0.27°,转向架与钢轨之间的横向相对位移分别为52.8 mm和48.1 mm,相比直线路段,列车在曲线路段更易脱轨。这些研究结果可为研发机械式的列车脱轨报警器提供重要的理论依据和技术参数,进而确保该报警器能在列车脱轨时立即发出报警,使列车及时停车。  相似文献   

3.
为研究客运列车因曲线超速引起的脱轨规律,基于列车-轨道系统空间振动计算模型,建立客运列车-曲线轨道系统空间振动计算模型。基于该模型,根据列车脱轨能量随机分析方法,提出客运列车曲线超速引起的脱轨全过程计算方法,计算不同曲线半径、外轨超高下列车超速引起的脱轨全过程,分析轮轨接触状态及其相对位置。研究结果表明:据脱轨系数和轮重减载率难以判定客运列车超速时是否脱轨;脱轨车辆位于编组前部,在脱轨前及时预警十分必要;随着曲线半径、外轨超高增大,列车脱轨速度随之增大,脱轨瞬间转向架与钢轨横向相对位移也随之增大;并考虑安全系数1.25,得到转向架与钢轨横向相对位移最大为60.2 mm,这可为研发客运列车曲线超速脱轨报警装置提供参考。  相似文献   

4.
根据重载铁路货物列车-轨道系统(FTT系统)横向振动稳定性分析方法,提出基于货物列车抗脱轨安全度的重载铁路轨道结构强化措施评价方法,分析并量化提高钢轨等级、采用III型轨枕、强化扣件及道床等轨道强化措施对货物列车抗脱轨安全度的影响。研究结果表明:与提高钢轨等级相比,采用III型轨枕对列车抗脱轨能力、临界车速及容许极限车速的影响更大;强化扣件或道床均可大幅度提高列车抗脱轨能力、临界车速及容许极限车速,但当扣件和道床的横向刚度分别大于120 MN/m和15 MN/m时,货物列车抗脱轨安全度提升幅度较小;上述轨道强化措施均能改善行车平稳性,但强化道床对行车平稳性影响较小。轨道强化措施具有提高货物列车抗脱轨安全度的功能,且本文提出的评价方法能够反映列车抗脱轨信息,可为轨道强化措施的评价和制定提供参考。  相似文献   

5.
基于列车-有砟及无砟轨道系统空间振动计算模型,采用列车脱轨能量随机分析方法,分别计算货物列车在有砟、无砟轨道上的脱轨全过程,得出2种车轨系统横向振动极限抗力作功及其动力响应,分析货物列车的运行安全性、2种车轨系统的空间振动特性。研究结果表明:与有砟轨道相比,无砟轨道的抗脱轨能力最大可提高45.9%,车速为90 km/h时无砟轨道上车体竖向Sperling平稳性指标、轮对横向力、轮轨竖向力分别减小73.5%,22.1%和27.3%;无砟轨道各部件横向位移、加速度均小于有砟轨道相应值,而钢轨竖向位移大于有砟轨道相应值,但由于无砟轨道竖向位移主要由扣件承担,导致钢轨传至道床板的竖向位移衰减75.3%;无砟轨道各部件竖向加速度均大于有砟轨道相应值,产生的振动、噪声对周围建筑影响更大。建议在重载铁路新线设计中优先采用无砟轨道,但应采取减振降噪措施。  相似文献   

6.
为确定具有预防货物列车脱轨功能的轨道刚度合理值,基于列车轨道系统空间振动计算模型及列车脱轨能量随机分析方法,提出了货物列车-轨道(FTT)系统横向振动稳定性分析方法,分析多组扣件及道床横向刚度组合下FTT系统抗脱轨能力、FTT系统横向振动稳定性及其振动响应的影响.结果表明:FTT系统抗脱轨能力、临界车速及容许极限车速随着扣件及道床横向刚度的增大均有大幅度提高,但当扣件和道床横向刚度分别增大至90和10 MN/m时,其提高幅度逐渐减小,且当扣件和道床横向刚度分别由120 MN/m增至150 MN/m、15 MN/m增至20 M N/m时FTT系统抗脱轨能力、临界车速及容许极限车速仅提高了3.9%,1.8%和1.8%;另外,增大扣件和道床横向刚度有助于减小轨道横向位移.考虑日趋紧张的重载铁路市场竞争,建议扣件横向刚度取90~120 MN/m,道床横向刚度取10~15 MN/m.  相似文献   

7.
针对重载铁路常见桥梁结构特点,建立货物列车-轨道-桥梁系统(简称"FTTB系统")空间振动计算模型;按照列车脱轨能量随机分析理论,提出重载铁路FTTB系统横向振动稳定性分析方法。通过算例,计算圆形墩加固前、后FTTB系统横向振动稳定性及其振动响应。研究结果表明:算例中圆形墩加固后FTTB系统抗脱轨能力可提高50%;圆形墩加固前、后FTTB系统横向振动失稳临界车速分别为134.45 km/h和156.99 km/h,容许极限车速分别为107.56 km/h和125.59 km/h;圆形墩加固后货物列车以80 km/h车速过桥时平稳性有保证;与加固前相比,桥梁跨中和墩顶横向位移分别减小54.5%和83.8%。该分析方法能够同时反映货物列车脱轨信息和FTTB系统空间振动特性,可为桥上货物列车脱轨预防措施提供更加全面、科学的评价。  相似文献   

8.
为了从理论上验证新型护轨在小半径曲线上的防脱、增稳和减磨作用,以列车-曲线轨道系统空间振动分析模型为基础,考虑新型护轨的结构特点及其与车轮、钢轨之间相互作用,建立带新型护轨装置的曲线轨道-列车系统空间振动分析模型.采用Fortran语言编制相应计算程序,利用现场试验结果验证本方法及程序的可靠性;分析新型护轨对系统空间振动响应的影响规律.计算结果表明:计算得出的护轨力分摊曲线外轨轮缘力比例达38.81%,与通过试验得到的新型护轨能够分摊33.3%~40.0%的曲线外轨轮缘力的结论相符;在试验工况及参数条件下,新型护轨可使车体、轮对及曲线外轨的横向位移分别减少28.62%,37.67%及14.64%,明显改善货物列车运行的平稳性.  相似文献   

9.
针对无碴轨道(以博格板式轨道为例)结构特点,提出横向有限条与板段单元动力分析新模型。将高速列车(以中华之星为例)的动车及拖车均离散为具有二系悬挂的多刚体系统,基于弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立高速列车-无碴轨道时变系统竖向振动矩阵方程,采用Wilson-θ法求解。分别采用传统的静力模型和横向有限条与板段单元动力分析模型,计算并比较钢轨与博格板的静、动态竖向位移最大值,得出车速为200km/h时此系统竖向振动响应时程曲线。计算结果表明,钢轨与博格板的静、动态竖向位移最大值接近,计算值均在通常值范围内,说明所提出的新模型正确、可行。  相似文献   

10.
货物列车编组对列车-桥梁系统空间振动的影响   总被引:2,自引:0,他引:2  
基于列车、桥梁空间振动分析模型,利用弹性系统动力学总势能不变值原理及形成系统矩阵的“对号入座”法则,建立了列车-桥梁系统空间振动矩阵方程,采用Wilson-θ法求解。研究了5种不同货物列车编组对列车-桥梁系统空间振动响应的影响,得出了一些符合物理概念的桥梁振动响应时程曲线。研究结果表明:机车、车辆轴重是影响桥梁竖向振动位移的主因;空载货车作用下的车桥系统横向振动响应比重车的要大;全列空车编组及空重混编是影响列车-桥梁系统横向振动响应的不利编组,而全列空车编组更为不利;在进行桥上货物列车脱轨分析时,宜采用全列空车编组;通过改善列车编组的方法可以提高列车-桥梁系统振动性能。  相似文献   

11.
在既有线货物列车提速背景下,为研究关门车(关闭制动支管截断塞门从而不起制动作用的车辆)编组位置对全空货物列车安全性的影响,根据车辆系统动力学理论和车辆-轨道耦合动力学理论,建立了列车-轨道耦合系统动力学模型,分析了制动初速从80 km/h提到90 km/h时,关门车编组在全空货物列车的前、中、后三部分时,货物列车的轮轴横向力、脱轨系数、轮重减载率等安全性指标,并与无关门车时的动力学安全性指标进行了对比,结果表明:在常用制动工况下列车中有无关门车时,安全性相差不大,且均满足《机车车辆动力学性能评定和试验鉴定规范》(GB/T 5599—2019)标准要求;关门车的安全性能与正常车辆相比,差异不明显;关门车位于列车头部时,轮轴横向力和脱轨系数略大于位于其他部位时的情况;关门车位于列车中部、后部时,动力学性能相差不大.  相似文献   

12.
针对列车曲线通过安全性问题,设计了一种电磁增粘装置,通过增大轮轨间的垂向电磁吸力来增加轴重,从而改善列车曲线运行过程中的轮轨粘着关系,保障列车安全运行。在SIMPACK中建立CRH2型车动力学模型进行仿真分析,结果发现随着励磁电流的增加,列车曲线通过性明显改善。励磁电流的增大可以明显降低四个车轮的脱轨系数与轮轨垂向力和横向力,降低对钢轨的冲击力。在速度250~300 km·h~(-1)的高速运行工况情况下,装有电磁增粘装置的转向架对脱轨系数的改善效果明显,脱轨系数降低6%左右。  相似文献   

13.
基于列车-轨道系统空间振动分析理论,考虑横风作用,建立横风-列车-轨道系统空间振动分析模型。根据弹性系统动力学总势能不变值原理及形成系统矩阵的"对号入座"法则,建立此系统空间振动矩阵方程,并编制相应的计算机程序求解该方程。计算横风作用下的列车-轨道系统空间振动响应,研究不同类型铁路车辆振动响应及倾覆稳定性的差异,分析横风对此系统振动响应的影响规律。研究结果表明:罐车的稳定性最好,敞车次之,棚车最差;横风对车体横向位移、轮重减载率和倾覆系数有很大影响,对车体横向加速度、脱轨系数及横向平稳性指标影响不大。  相似文献   

14.
在运营过程中,受高速列车的碾压和冲击,小半径曲线地段已成为高速铁路轨道结构的薄弱环节之一.为保障列车的安全运行,需建立小半径曲线地段轨道结构长期监测系统,实现监测数据的自动采集、传输、存储和关联分析,并对可能发生的破坏进行预测预警.通过对2年监测周期内小半径曲线地段CRTS Ⅱ型板式无砟轨道结构的温度、受力变形等监测数据的综合分析,得出合肥地区夏季轨道板板中的月最高温度是月最高气温值增加11℃,冬季轨道板板中的月最高温度是月最高气温值减少3℃;全年路基摩擦板地段钢轨与轨道板的纵向相对位移在1mm以内,大端刺附近钢轨与轨道板的纵向相对位移最大值为2.9mm;从简支梁到端刺,钢轨受到的压应力逐渐减小,冬季端刺区钢轨出现了拉应力,最大拉应力为32MPa.  相似文献   

15.
焦柳线酉水大桥上货物列车脱轨分析   总被引:3,自引:2,他引:3  
结合自动控制理论,研究了桥上列车脱轨的力学机理,发现桥上列车脱轨是列车-桥梁时变系统横向振动丧失稳定的结果。根据桥上列车脱轨能量随机分析理论,对焦柳线酉水大桥上货物列车是否脱轨进行了计算和分析,并得到了列车脱轨时此系统振动响应的时程曲线;同时,提出了该桥在不采取加固措施的条件下预防列车脱轨的限速建议值,该值与该桥实车振动试验所确定的限速值一致。最后,指出我国《铁路桥梁钢结构设计规范》中制订连续钢桁梁桥横向刚度限值时存在的问题,论证了按列车脱轨能量随机分析理论重新制订桥梁横向刚度限值的必要性。  相似文献   

16.
为了研究地震对车桥系统耦合振动的影响,采用最小二乘法对地震加速度进行校正拟合,消除位移时程因直接对加速度时程积分出现的漂移现象。根据弹性系统动力学总势能不变值原理及形成矩阵的对号入座法则,将轨道不平顺作为系统的自激激励源,地震作为外部激励,建立考虑地震作用的车桥系统耦合振动方程。并以某钢桁梁桥为例,采用计算机模拟的方法,建立列车和桥梁动力分析的有限元模型,研究地震对车桥系统耦合振动的影响。研究结果表明:在地震作用下,桥梁的动力响应主要取决于地震力,横向地震波对车辆与桥梁的横向动力响应具有非常重要的影响;竖向地震波主要影响车桥系统的竖向振动,对横向振动影响很小;但是,竖向地震波对脱轨系数、轮重减载率、车体竖向加速度的影响较显著,因此,在评判桥上列车的运行安全性时必须考虑竖向地震波的影响。  相似文献   

17.
车轮沿钢轨纵向滚动是列车的主运动方式。受横向力是列车脱轨的主要原因。列车的众多车轮构成轮群,轮群运动及在轨道上的轮轨受力关系非常复杂,在每一个瞬间,每一节机车和车辆、每一个转向架、每一个轮对、每一个车轮的轮轨受力都会有细节上的不同。作理想假定,化繁为简,研究瞬间横向外力对轮对运动的影响,对于判断违法行为人实施的行为给列车行车安全可能造成的危害及影响,依据我国《刑法》第116条、第117条规定确定其行为的罪与非罪性质等均具有重要参考价值。  相似文献   

18.
为了研究地震发生时列车移动荷载引起的弹性均质路基的振动响应规律,采用ABAQUS软件并与FORTRAN相结合建立轨道结构-路基-地基三维数值计算模型,通过编制DLOAD子程序模拟列车移动荷载,在模型底部输入地震加速度模拟地震荷载,采用三维黏弹性人工边界模拟波从有限域向无限域传播,忽略轮轨接触及轨道不平顺的影响,通过对比分析的方法,总结地震荷载和列车移动荷载共同作用下路基在不同列车速度及轴重条件下的应力、位移和加速度的振动特征。研究结果表明:地震荷载对路基的位移振幅起主导作用,列车移动荷载对路基的应力和加速度起主导作用;路基各结构层的位移随列车轴重的增加而减小,随车速增加表现为先减小后增大;路基各结构层加速度随着列车轴重的增加而增加,随车速增加表现为先减小后增大又减小的趋势;推测车速70 m/s为列车影响的临界速度。  相似文献   

19.
针对车辆蛇形运动、横向摆动和侧滚姿态导致的轮轨磨耗严重、脱轨危险系数大等问题,研究双相机双激光器在线检测轮对侧滚角的图像处理方法;将2组激光器和相机分别安装在2条轨道上方的转向架上,对采集的轨面激光点图像进行梯形校正、轨道边缘直线检测和激光点位移测量,采集的位移数据用以判断和计算车辆的实际橫移和侧滚角。模拟转向架设备的检测实验结果表明,双激光器检测车辆橫移的误差小于0.5 mm,相对误差小于8%,检测车辆的侧滚角小于6°,误差小于0.2°,测量精度高,抗干扰性能强。  相似文献   

20.
采用梁轨一体化无砟轨道有限元模型,计算了不同梁端位移作用下扣件系统与钢轨的受力,得出:①梁端位移对扣件系统与钢轨的受力影响很大,设计中应引起足够的重视;②相比活动支座,固定支座对控制梁端扣件系统与钢轨受力更为有利;③同一墩台两侧粱发生不对称位移比发生对称位移时对无砟轨道梁端扣件系统与钢轨的受力影响更为显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号