首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
为了解长三角典型县级市—–义乌市大气PM_(2.5)中烷烃的污染特征和来源,于2015年7月—2016年4月,使用TH-16A四通道采样器分别在义乌市北苑站点和江东站点采集大气PM_(2.5)样品,采用气相色谱-质谱联用仪对正构烷烃(C16~C34)和藿烷(C27~C32)进行定量分析.结果表明,北苑站点和江东站点大气PM_(2.5)中正构烷烃的年均浓度分别为78.0和80.4 ng/m3,站点之间没有明显差异;正构烷烃的浓度存在明显的冬季秋季春季夏季的季节性变化规律.正构烷烃的分布特征、主峰碳数(Cmax)、碳优势指数(carbon preference index, CPI)和植物蜡贡献率(Wax%)都表明化石燃料源是义乌市PM_(2.5)中正构烷烃的主要来源,植物蜡的平均贡献率约为20%.义乌市PM_(2.5)中藿烷的年均浓度在北苑站点和江东站点分别为5.5和4.6 ng/m3,藿烷浓度和正构烷烃浓度之间存在较强的正相关关系.依据藿烷同系物的分布特征,机动车排放是义乌市PM_(2.5)中有机质的重要来源.  相似文献   

2.
为研究郑州市PM_(10)和PM_(2.5)中多环芳烃(PAHs)的污染特征、来源及对健康的影响,于2013年4—12月在郑州大学采样点同步采集大气中的PM10和PM_(2.5).利用气相色谱-质谱联用仪对16种优先控制的PAHs进行定量分析,在此基础上运用Ba P毒性当量法对PAHs进行健康风险评估,并采用比值特征法揭示PAHs的可能来源.结果表明:郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs的单体质量浓度随季节变化特征明显,基本上都呈现冬季秋季春季夏季的趋势,其中4~6环化合物是PAHs的主要成分.郑州市四季大气颗粒物Ba P质量浓度均超过国家空气质量标准限制,存在潜在健康风险.经过比值特征法分析得出,郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs主要来自燃煤源、石油化工源、生物质燃烧源和机动车尾气源.  相似文献   

3.
使用GC×GC-TOFMS仪器对北京2016年11月雾霾和非雾霾期采集的颗粒物中正构烷烃(C10-C36)进行了定量分析,并且对其分布特征和污染来源进行了分析.结果表明,北京市大气颗粒物中正构烷烃在雾霾天的含量明显高于非雾霾天,浓度分别为591 ng/m3和270 ng/m3.支链烷烃与正构烷烃具有一致的分布规律,在雾霾天也具有较高的浓度,且主要分布在碳数为C19-C28范围内.根据正构烷烃(C10-C36)的碳优势指数(CPI、CPI1和CPI2)结果,可知雾霾和非雾霾期间,北京市大气气溶胶中正构烷烃主要由人为源(汽车尾气、化石燃料燃烧等)排放产生,而植物来源相对贡献较小.植物蜡分布(WAX%)的结果表明,生物源在雾霾和非雾霾天对气溶胶中正构烷烃的贡献率分别为22%和12%.雾霾期间与非雾霾期间相比,生物源对正构烷烃的贡献相对较大.  相似文献   

4.
2006年10月中旬在厦门市岛内5个站点(A.上李水库、B.狐尾山气象站、C.金山小学、D.安兜小学、E.科技中学)采集了大气PM10样品.对大气PM10及其负载的正构烷烃进行了污染特征和来源分析.结果表明,厦门市大气PM10的质量浓度仅达到国家大气质量二、三级标准;各站点大气PM10中正构烷烃的相关指标分析显示,其污染来源以人为源输入为主,与城市机动车尾气、生活油烟的排放有关.  相似文献   

5.
采集了上海市淀山湖区域2015年3月至2016年2月灰霾天大气颗粒物中PM_(2.5)样品,重点分析了其中碳组分的污染特征。结果表明,PM_(2.5)年均质量浓度为(69.01±37.05)μg/m~3,数值与有机碳(OC)、元素碳(EC)和水溶性有机碳(WSOC)显著相关,相关性大小与灰霾程度有关。OC、EC的年均质量浓度分别为(4.46±3.41)μg/m~3和(2.15±1.31)μg/m~3,呈现冬季高、夏季低的趋势,两者显著相关,相关性大小同样与灰霾程度有关。WSOC的年均质量浓度为(2.07±1.40)μg/m~3,春季高于冬季,且灰霾天质量浓度大于非灰霾天相应值。碳组分对大气能见度的影响较大,需得到控制。  相似文献   

6.
于2015年6月~2016年5月对广州大气细粒子PM_(2.5)进行持续观察,分析了样品中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的含量.结果表明:广州大气PM_(2.5)含量为(66.03±43.11)μg·m~(-3),OC含量为(8.19±5.01)μg·m~(-3),EC含量为(1.75±0.80)μg·m~(-3); OC,EC和总碳(total carbon,TC)占PM_(2.5)的比例分别为16.73%,3.85%和20.58%,表明广州细粒子的碳污染程度较为严重; PM_(2.5),OC和EC污染都呈现冬季春季夏季秋季的特征,与历史研究基本一致; OC,EC相关系数较高(R~2=0.929),表明二者来源较为相近,且PM_(2.5)中EC1占比例最高(45.41%),表明广州燃煤和机动车尾气是重要的污染源;二次有机碳(SOC)为(4.10±3.56)μg·m~(-3),占OC的比例为46.19%,表明广州二次有机碳的排放与形成是碳污染的重要因素.与历史数据相比,广州大气污染情况有所改善,碳气溶胶污染几乎达到历史最低值.  相似文献   

7.
利用南昌市2016年4月~2017年3月8个监测点的PM_(10)和PM_(2.5)质量浓度的监测数据,通过聚类分析探讨了大气颗粒物PM_(10)、PM_(2.5)的污染状况和不同功能区间的变化规律.结果表明:2016年南昌市大气颗粒污染物中,细颗粒物(PM_(2.5))较可吸入颗粒物(PM_(10))超标情况更严重;从时间角度看,PM_(10)和PM_(2.5)浓度表现为冬季春季/秋季夏季的季节性变化趋势;从空间角度看,表现为商业交通居住混合区交通区文教区居住区风景区的变化规律;PM_(2.5)/PM_(10)比值变化特征提示冬季可吸入颗粒物中细颗粒物所占比重最大,春季和秋季次之,夏季最小;在影响因素中,监测点大气颗粒物的浓度受交通环境的影响最大,受居民日常生活排污的影响次之.  相似文献   

8.
为了解衡阳市中心城区雾霾天PM_(2.5)中重金属污染特征与来源,2014~2015年连续2年对衡阳市城区冬季大气PM_(2.5)进行采集.通过滤膜称重法测量PM_(2.5)质量浓度,微波消解—原子吸收光谱法(AAS)测定PM_(2.5)中Pb、Cd、Cu、Cr、Ni和Fe等6种重金属元素质量浓度,结合富集因子法对衡阳城区大气PM_(2.5)进行来源解析.结果表明:采样期间,衡阳市中心城区冬季雾霾天PM_(2.5)平均质量浓度均超过国家二级标准,2014和2015年冬季PM_(2.5)中重金属污染趋势基本相同,分别为CuFePbCrNiCd和CuFeCrPbNiCd,表明衡阳城区冬季重金属污染规律明显,富集因子法分析后发现PM_(2.5)中Pb、Cd、Cu、Cr、Ni和Fe元素的EF值均大于10,明显来自于人为污染源,其中Cd、Cu为极强富集,污染可能来源于城区周围金属冶炼和工业燃煤烟尘.  相似文献   

9.
为探究郑州市大气细颗粒物PM_(2.5)中多环芳烃(PAHs)的污染特征,在2017年10月—2018年7月期间,选取典型月份采集四季PM_(2.5)样品进行分析。郑州市PM_(2.5)和PAHs的年均质量浓度分别为(93.0±54.6)μg/m~3和(26.3±21.0) ng/m~3,呈现冬季高、夏季低的季节变化趋势;冬季4环PAHs的占比高达41%,春、夏、秋3个季节的环数分布以5和6环比例最大;苯并[a]芘(BaP)和BaP毒性当量的年均质量浓度分别为2.3 ng/m~3和4.0 ng/m~3,四季的质量浓度均在较高水平。增量终生致癌风险评估结果表明,PAHs致癌风险值在0.13×10~(-6)~1.45×10~(-6)范围内,部分时间高于美国环境保护署规定的可接受风险水平,存在一定的健康风险。  相似文献   

10.
卫星观测不仅能反映全球尺度的大气污染状况,也能从城市等区域尺度上监测大气污染物的变化.本文基于2004-2013年MODIS气溶胶标准产品,利用PM_(2.5)卫星遥感估算的统计模型,统计分析了郑州地区的PM_(2.5)质量浓度的年际及季节变化特点,有助于深入研究郑州地区细颗粒物污染水平变化.研究发现,在空间上,郑州地区PM_(2.5)高值区主要集中在郑州市市辖区、中牟县、新郑市、荥阳市以及巩义市西北等地区,低值区主要分布于登封市和巩义市南部的山地地区.在时间上,2004-2011年整个郑州地区PM_(2.5)质量浓度总体呈现逐年增长的趋势,直到2011年达到峰值(108.59μg/m3).2011年之后,该地区PM_(2.5)污染状况有所好转,但仍处于重度污染状态.季节变化方面,PM_(2.5)高值通常出现在冬季(149.28μg/m3),秋季次之,春、夏季该地区PM_(2.5)质量浓度较低(81.71μg/m3).研究结果表明,利用卫星数据可以有效地分析郑州地区的PM_(2.5)时空分布特征,为该地区的PM_(2.5)污染治理提供有力的数据和技术支撑.  相似文献   

11.
以2013—2015年武汉市大气污染物特征及变化趋势为研究对象,对大气污染物综合指数和各污染物单项指数进行分析.其主要结论是:大气污染冬季的污染状况比夏季严重,其中空气质量2013年优于2015年,2014年最差;根据各污染物单项指数,确定颗粒物(PM_(2.5))为大气污染的主要因子;PM_(2.5)、PM_(10)、SO_2、NO_2、CO的浓度冬季大于夏季,O_3的浓度夏季大于冬季;根据各污染物之间相关性及气象因素的分析,PM_(2.5)、PM_(10)、SO_2、NO_2、CO之间均成正相关关系,其中PM_(2.5)与CO的相关性为0.901(P0.01),接近1,说明CO对PM_(2.5)的形成有直接作用;污染物与气象因素的相关性分析,几种污染物与气压、降水量、气温有明显的相关性;根据聚类分析,大气污染变化趋势与季节有关,季节变化特征为夏季春秋季冬季.  相似文献   

12.
为探究云南省有色冶炼集中区春季大气颗粒物污染的原因,于2017年3月20—29日在云南省主要有色冶炼集中区—蒙自市、个旧市和开远市(简称"个开蒙地区")设立了9个采样点,同步采集大气PM_(2.5)和PM_(10)环境样品.检测了无机元素、水溶性离子和碳成分等19种化学成分,分析了颗粒物理化特征,并基于EF(富集因子)、后向轨迹模型和PCA-MLR(主成分分析-多元线性回归)模型,阐述了个开蒙地区大气颗粒物的来源.结果表明:①采样期间,个开蒙地区PM_(2.5)和PM_(10)质量浓度平均值分别为(50.79±20.67)μg/m~3和(73.47±33.86)μg/m~3,3月24日PM_(2.5)质量浓度超过国家二级标准限值(75μg/m~3);②PM_(2.5)和PM_(10)中Cu、Zn、Ca、Pb、As和Cd等无机元素的EF值范围为10~4 000,受到人为源的显著影响;③气团后向轨迹特征表明,到达个开蒙地区的污染气团主要经过了生物质燃烧火点较为密集的缅甸中部等地区,表明个开蒙地区春季环境空气质量受到了东南亚生物质燃烧传输的影响;④PCA-MLR源解析模型分析表明,采样期间生物质燃烧和有色冶炼活动对个开蒙地区大气颗粒物有重要贡献,其中生物质燃烧贡献率在30%以上,有色冶炼活动(含二次粒子)综合贡献率高于45%.  相似文献   

13.
利用2015年上海市大气污染物的监测数据,运用MATLAB7.0、SPSS等软件进行PM_(2.5)质量浓度污染特征、变化规律以及PM_(2.5)与其他污染气体的相关性分析。研究结果显示,2015年上海市PM_(2.5),年平均浓度为53.6μg/m~3,相比基准年2013年,年均浓度下降14%;PM_(2.5)浓度月变化曲线呈U型分布,其中,月均浓度数值1月份达到最高峰,为82.9μg/m~3;季节污染情况为:冬季春季秋季夏季;PM_(2.5)日均浓度值全年波动较为稳定,超标天数占全年比率21.4%。根据AQI指标监测气体的相关性矩阵来看,PM_(2.5)和PM_(10)之间的相关性最大,相关系数为0.919;与CO、NO_2、SO_2等气体均有较强的相关关系。建议上海市应该优化产业结构、加强公共交通建设、采用清洁能源以期实现治污除霾的目标。  相似文献   

14.
为了解北京城区灰霾期间PM_(2.5)中的水溶性离子的污染特征及来源,于2014年1月9日至2014年1月17日在首都师范大学对大气PM_(2.5)样品进行了连续采集,并利用离子色谱法对样品中的水溶性离子进行了分析.结果表明,PM_(2.5)中的水溶性离子质量浓度的日均值为(113.40±77.46)μg·m-3;10种水溶性离子(F~-,NO_2~-,SO_4~(2-),NO_3~-,Cl~-,NH_4~+,Ca~(2+),Na~+,Mg~(2+)和K~+)的总浓度的平均值为(65.34±50.06)μg·m~(-3),其中水溶性离子总量约占PM_(2.5)质量浓度的57%.重污染期间水溶性离子表现出爆发性增长,NO_3~-和SO_4~(2-)的增长率分别为7.57μg·h-1和8.12μg·h-1.结合气象因素发现当温度偏高,气压较弱,相对湿度较高,风速小且以偏南风为主时,PM_(2.5)及其中的水溶性离子质量浓度都维持在较高水平.主成分分析(Principal Component Analysis,PCA)结果也表明,随PM_(2.5)质量浓度逐渐增加的过程中,污染来源为人为二次污染、化石燃料燃烧、交通排放和工业排放,同时还可能存在生物质燃烧和粉尘及废物焚烧的共同影响.  相似文献   

15.
利用2018年1月、4月、7月、10月郑州市城区8个监测站点的PM_(2.5)和PM_(10)浓度数据与气象数据,对郑州市城区PM_(2.5)和PM_(10)的时相变化特征及气象要素对其产生的影响进行研究.结果表明:郑州市城区在1月份的PM_(2.5)浓度最高(118.1μg·m~(-3)),污染严重,4月份PM_(10)浓度最高(169.4μg·m~(-3)).通过分析PM_(2.5)和PM_(10)的比值(PM_(2.5)/PM_(10))发现, PM_(2.5)是郑州市城区主要的大气污染物.PM_(2.5)和PM_(10)与气象要素之间的相关分析表明,PM_(2.5)和PM_(10)与气温和露点温度均呈显著负相关(P0.01),PM_(10)与降水呈显著负相关(P0.05),PM_(2.5)与气温之间的相关性(r=-0.441,P0.01)高于PM_(10)和气温的相关性(r=-0.311,P0.01).另外,当风速在2~3 m·s~(-1)时,PM_(10)最低;而风速大于4 m·s~(-1)时,颗粒物浓度增加明显,且对于PM_(10)的增加作用更显著.露点温度与颗粒物浓度之间也存在一定关系,当露点温度大于0℃时,颗粒物浓度会随露点温度的增加而降低.2018年郑州市PM_(2.5)与PM_(10)昼夜变化呈双峰型特征;风速与温度的双重作用导致PM_(2.5)浓度先于PM_(10)达到最高值,而空气湿度和露点温度则是造成04:00时颗粒物较低的主要原因.另外,通过多元回归分析发现,各月份昼夜时段颗粒物浓度主要受温度和相对湿度影响;在各时段中,温度与颗粒物浓度关系最为密切,风速次之,湿度最弱,各气象要素对PM_(2.5)浓度的影响较PM_(10)浓度更大.  相似文献   

16.
利用四川盆地18个城市2015-2016年6种大气污染物质量浓度资料,采用了集中期、集中度和变异系数等统计学方法,对该地区大气污染的时空分布特征进行了分析,将四川盆地划分为3个区进行对比研究.结果表明,四川盆地18个城市中,大气污染最严重的是自贡市,年均空气质量指数为100,污染天数占总天数的37.6%;污染最轻的是广元市,年均空气质量指数为57,污染天数占总天数的4.5%.四川盆地3个区域按照污染物质量浓度高低以及出现污染天数的长短排序均为:川南经济区成都平原经济区川东北经济区.研究时间段内,18个城市PM_(2.5)年均质量浓度达标的只有广元市;PM_(10)年均质量浓度达标的只有广元市和巴中市;SO_2年均质量浓度18个城市均达标;NO_2年均质量浓度除成都市和重庆市外,其他16个城市均达标;所有城市的CO和O_3日质量浓度均达标.近36年来,颗粒物和SO_2质量浓度呈现不同程度降低,表明国家对大气污染物排放的管控措施对颗粒物和SO_2污染改善明显.污染物PM_(2.5)、PM_(10)、CO、NO_2和SO_2质量浓度的季节变化为冬季高,夏季低;O_3质量浓度季节变化则为冬季低,夏季高.PM_(2.5)、PM_(10)和O_3质量浓度高的时段相对于SO_2、NO_2和CO来说更为集中,PM_(2.5)、PM_(10)、SO_2、NO_2和CO高质量浓度时段主要集中在1月左右,O_3高质量浓度时段主要集中在6月左右.不同城市间SO_2和NO_2质量浓度差异明显,其他污染物质量浓度分布则较为均匀.  相似文献   

17.
利用福州市国控监测站点2013年4月-2017年3月PM_(2.5)和PM_(10)质量浓度监测数据,对福州市不同粒径颗粒物污染特征进行研究.结果表明:时间变化方面,福州市空气质量整体较好,PM_(2.5)和PM_(10)浓度呈逐年下降趋势;PM_(2.5)、PM_(10)、PM_(2.5)/PM_(10)时间变化规律具有一致性:呈现冬季>春季>秋季>夏季的季节性特征;春季、夏季和秋季工作日浓度均高于周末的浓度,存在周末效应,冬季周末浓度则显著高于工作日浓度;日变化呈明显的双峰型变化趋势.空间变化方面,PM_(2.5)和PM_(10)浓度变化表现为工业区>市区>清洁区,清洁区PM_(2.5)/PM_(10)比值最高,其次是市区、工业区.相关分析结果表明:PM_(10)和PM_(2.5)存在显著相关性,且相关性明显受季节影响,夏季相关性最高.城市颗粒物与气态污染物(SO_2、NO_2)复合性较强.  相似文献   

18.
含氮化合物是大气细颗粒物(PM_(2.5))的重要组分,其中含氮有机物是含氮组分的重要存在形式,对陆地和水生生态系统影响较大.于2015年4月、7月和10月分别采集了金华市3个具有代表性站点的PM_(2.5)样品,分析了其中水溶性有机氮(water-soluble organic nitrogen,WSON)的质量浓度分布及季节变化特征.结果表明:金华市PM2.5中WSON质量浓度范围为0.06~6.90μg/m~3,平均1.90μg/m~3,对水溶性总氮(water-soluble total nitrogen,WSTN)的平均贡献率为31%.WSON的质量浓度分布具有明显的季节变化特征:秋季较高,夏季较低,而在夏季WSON对WSTN的贡献率最高.金华市PM_(2.5)中WSON的主要来源可能是含氮前体物在大气中的二次转化以及生物质燃烧活动.  相似文献   

19.
为了对湄洲湾表层海水中溶解态正构烷烃组分及来源进行研究,于2008年4月在湄洲湾肖厝沿岸布设5个站位,采集表层海水水样,采用层析柱分离、气相色谱法对水体中正构烷烃组分进行了分析.发现溶解态的正构烷烃分布范围为C8~C36,其中C11和C18浓度较高,正构烷烃总量为1.22~1.55μg/L,平均值为1.35μg/L.同时通过分析正构烷烃的碳优势指数、奇偶比等分子组成特征参数,发现湄洲湾肖厝沿岸表层海水中正构烷烃主要来源于外源性石油污染的输入,少量来源于生物的输入.  相似文献   

20.
2016年11月29日—12月9日,上海连续发生两起大气污染事件,最高小时PM_(2.5)质量浓度分别达到119和179μg/m~3.利用黑碳(black carbon,BC)仪的在线观测数据,结合大流量PM_(2.5)滤膜样品的化学组成数据——有机碳(organic carbon,OC)、元素碳(element carbon,EC)、水溶性离子、金属元素,观察两次污染过程中PM_(2.5)的化学组成和来源变化.结果表明,在两次污染过程中,污染期的平均PM_(2.5)质量浓度分别是洁净期的4.2和3.9倍,而平均黑碳质量浓度仅为洁净期的1.6和1.9倍.污染期的最高黑碳质量浓度为8.94μg/m~3,占PM_(2.5)的百分比为22.0%.在两次污染过程中,洁净期的平均黑碳质量浓度占PM_(2.5)的百分比分别为11.8%和7.5%,显著高于污染期的4.4%和3.7%.污染期的二次污染严重,平均二次污染物分别占PM_(2.5)的百分比为41.8%和31.9%,平均二次有机碳(secondary OC,SOC)占有机碳的百分比分别为42.5%和34.9%.在两次污染过程中,燃煤、机动车、船舶排放和生物质燃烧均有显著贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号