首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

2.
指出求函数的不定积分或原函数时 ,要注意定义范围。并给出一个重要命题 ,即 :若 f(x)在 [a,b]上连续 ,且 F(x)是 f(x)在 (a,b)上的一个原函数 ,则 F(x)在 [a,b]上的连续延拓是 f (x)在 [a,b]上的原函数  相似文献   

3.
指出求函数的不定积分或原函数时,要注意定义范围.并给出一个重要命题,即:若f(x)在[a,b]上连续,且F(x)是f(x)在(a,b)上的一个原函数,则F(x)在[a,b]上的连续延拓是f(x)在[a,b]上的原函数.  相似文献   

4.
实函中证明了[a b]上的有界函数f(x)黎曼可积的充要条件是f(x)不连续点所成之集的勒贝格测度为零。关于黎曼——斯蒂阶积分也有类似定理:f(x)在[a,b]上有界,α(x)为[a,b]上的有界变差函数,则f(x)在[a,b]上关于a(x)黎曼——斯蒂阶可积的充要条件是α(x)在f(x)不连续点所成之集上的全变差为零。本文就是给出这个定理的一个证明。  相似文献   

5.
问题 f(x)在区间[a,b]上连续,在(a,b)内可导,对任意给定的三点a≤x0相似文献   

6.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

7.
F.N.Huggins在[1]中研究了f(x)∈AC[a,b]、及f(x)∈Li(m,p,[a,b]),本文研究f(x)∈AC 2[a,b]g及f(x)∈Li_2(m,1,(a,b])及其关系,其目的是推广[2]中的f(x)∈AC_2[a,b]及[3]中的f(x)∈Li_2(x,1,[a,b]),且得到了它们之间的关系及与二级全变差、二级囿变函数之间的联系。  相似文献   

8.
定积分的第二中值公式有下列三个定理给出的三种形式。定理1 假设函数f(x)在闭区间[a,b]上单调减小(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得定理2 假设函数f(x)在闭区间[a,b]上单调增加(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得  相似文献   

9.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

10.
1 函数列一致收敛性定理定理1 若函数列f_n(x)在[a,b]上同等连续,且对于任一x∈[a,b],有f_n(x)→f(x)(n→∞),则f_n(x)在[a,b]一致收敛于f(x)。  相似文献   

11.
<正> Sard定理右f(x)d[a,b]上连续可微,则集合{f(x):f'(x)=0}的Lcbcsgnc测度为零。为证明此定理,我们先证一个引理: 引理若f(x)在[a,b]上连续可微,则对任开集A[a,b],有{f(x):x∈A}  相似文献   

12.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

13.
用f(x)表示[a,b]区间上的实连续函数,C[a,b]表示[a,b]上的所有实连续函数组成的集合,π_n表示次数不超过n的所有实系数代数多项式之集合。已知对任一f(x)∈C[a,b],在π_n中唯一地存在多项式P_f,使对任一P(x)∈π_n都满足:  相似文献   

14.
引言本文引入了函数f(x)在[a,b]上R_φ积分概念,研究R_φ积分的性质以及R_φ积分与Riemann积分的关系,并得出函数f(x)在[a,b]上Riemann积分的几个等价定义。在本文中,[a,b]是实数轴上的有界闭区间;f(x)是定义在[a,b]上的实值函数;I是实常数,[a,b]上的分法T是有限点集T={x_0,x_1,…,x_n:a=x_0相似文献   

15.
这文章证明了如下的积分基本定理: 假定f(x)是定义在区间[a,b]上的实函数,同时, (ⅰ) 它的右上导数D~+f(x)>-∝,右下导数D_+f(x)<∝,在(a,b)上至多除掉一个可列集Γ以外处处成立, (ⅱ) f(x)在(a,b]上处处在半连续, (ⅲ) 对所有的x∈Γ成立, (ⅳ) 存在一个L可测的实函数ψ(x),使D~+f(x)≥ψ(x)≥D_+f(x)在[a,b)上几乎处处成立,而且max{ψ(x),0}(或min(ψ(x),0})在[a,b]上可积,那末ψ(x)在[a,b]上可积;而且 这里,有关的积分概念可以是Lebesgue的,也可以是Perron的。定理关于ψ(x)这种函数可积分的判断有它独立的意义。证明中吸收了I.S.Gal的方法,同时弥补了原作者忽略的部份。 文章最后举例说明定理的几个条件的相互独立性和对于定理的成立的必要性。  相似文献   

16.
当函数f(x)在区间[a,b]上(R)可积,且f(x)>0(或f(x)<0)在[a,b]上几乎处处成立时,给出了(R)积分不等式以∫a^bf(x)dx>0(或∫a^bf(x)dx<0)及其证明。  相似文献   

17.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

18.
在学习欣欽的“公用事业理論的数学方法”一书的第一部分时,我們发现其中的导数实际上应該是右导数。在該书§10巴尔姆公式的一节中更牵涉到右导数的积分問題。为此我們对于初等微积分的內容作了一些如下的补充。引理1 若f(x)連續于[a,b],f(a)=f(b),且于[a,b]上右导数f+′(x)存在,則必存在x_1,x_2ε[a,b)使f′+(x_1)≥0;f′+(x_2)≤0。[証明] 由f(x)的連續性和f(a)=f(b),可知f(x)在[a,b)上达到最小值与最大值,分別令它們为f(x_1)与f(x_2),x_1,x_2ε[a,b)。此时不难看出成立着  相似文献   

19.
本文讨论了积分变上限函数列Fn(x)=φn∫(x)af(t)dt及Fn(x)=φ(∫x)afn(t)dt的一致收敛性。得出了当{fn(x)}在[a,b]上一致收敛于可积函数f(x)时,如果φ(x)有界;或{φn(x)}在[a,b]上一致收敛于φ(x),且φ(x),f(x)有界,那么{Fn(x)}在[a,b]上一致收敛的结论。  相似文献   

20.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号