首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
基于新建天津地铁5号线与既有地铁1号线十字换乘车站——下瓦房站的现场实测数据,研究深基坑开挖与既有车站十字相交时,基坑围护结构、墙后地表和既有车站的变形规律.研究结果表明:围护结构最大水平位移约0.064%H(H为基坑开挖深度),位于地表下约0.63 H.墙后地表最大沉降约0.025%H,位于墙后约0.71 H,沉降槽影响范围约为2 H.墙后地表最大沉降与围护结构最大水平位移的比值介于0.38~1.04之间,平均约为0.77.与基坑开挖方向交叉的既有地铁车站竖向上浮,水平方向外凸,以水平变形为主.既有车站周围止水加固和加固墙后软弱土层可显著减小既有结构变形.  相似文献   

2.
为预估及探讨市政道路挖填方对既有下穿地铁结构的影响程度,通过基于地勘建立的有限元—荷载结构的分析方法,建立以地铁结构—岩土—道路为基础的三维多场耦合模型,研究道路施工的各阶段工况对地铁结构的影响.结果表明:在不同的施工阶段中,围岩隆起量最大的是道路开挖阶段,围岩及车站结构沉降量最大的是道路回填阶段,道路施工引起的车站拱顶沉降和拱底隆起量符合国家相应规范的几何容差要求;通过对车站及出入口结构的弯矩、轴力验算表明,车站结构在道路回填阶段内力变化较大,出入口结构在道路开挖阶段内力变化相对较大,但经计算在最不利工况下的内力满足承载力要求.不过考虑到现场情况复杂多变,后期施工中仍应加大重视,防止因其他因素引起的内力超限现象的发生.  相似文献   

3.
城市地铁车站降水施工对周边环境及既有结构安全稳定性影响是城镇地下交通工程广泛关注的研究问题之一。基于分层总和法分别给出了在表层孔隙性潜水,或在承压含水层中降水施工引起周边土层沉降规律分析公式。以某地铁车站工程为背景,就车站降水施工引起周边地表沉降规律进行了应用研究;利用分析结果对影响区内的重要结构工程的安全稳定性进行了评价研究。实例分析表明,不同含水层的降水对地表沉降影响不同;在距基坑较近范围内,潜水含水层降水对既有建筑结构基础沉降影响较大。在该工程施工中,应更加注重潜水含水层降水施工对临近建筑结构的影响观测与监控。所给公式简单方便,可用于设计期间进行降水施工对周边环境及既有结构影响的简单估算。  相似文献   

4.
为了控制暗挖施工带来的环境风险,提出了以控制地层变形为核心,以保证既有结构安全为目的的风险管理体系.该体系包括:既有结构现状评估、施工影响预测、控制方案制定、监测反馈及工后评估与恢复,在目前国内最大的暗挖地铁换乘车站——北京地铁黄庄站得到了应用,从技术上保证了环境安全.根据监测数据,10号线双层段最终地表沉降全部控制在80 mm以内,其中控制在64 mm以内的测点占总测点数的93.6%;管线测点沉降值全部小于30 mm,最大差异沉降为1.123‰.表明风险控制中制定的控制标准是合理的,施工中采取的措施是有效的.  相似文献   

5.
为研究基坑开挖对临近既有地铁隧道结构的影响,以济南历下医养结合中心项目近接地铁R3线施工为工程背景,开展风险判定并采用 FLAC3D 进行大型三维数值模拟研究。结果显示:基坑外部作业对地铁隧道的影响等级为二级;隧道开挖引起地表沉降模拟结果与实测数据基本吻合,数值模拟结果较可靠;基坑开挖引起左线隧道竖向位移最大-2.27mm、水平位移最大4.59mm,右线隧道竖向位移最大-3.0mm、水平位移最大5.19mm,左线隧道轨道竖向位移最大-2.27mm、轨向高差最大0.528mm,右线隧道轨道竖向位移最大-3.0mm、轨向高差最大0.763mm,均出现在B基坑西侧;基坑开挖引起径向附加压力很小,在10~20kPa范围内。总体上基坑开挖对隧道结构造成的影响均小于规范限值。  相似文献   

6.
沈阳地铁市府大路站是采用小直径管幕工法施工的地铁暗挖车站.通过有限差分软件FLAC3D建立车站结构-地层三维模型,分析总结了小直径管幕工法动态开挖过程引起的地层及主体结构的位移变形规律.结果表明:小直径管幕工法开挖过程引起的地表沉降具有明显的阶段性,沉降槽形态在群洞效应和管幕预支护作用的影响下变化频繁,横导洞间土体开挖阶段引起的地表沉降占到了最终沉降的50.54%,该阶段是地表沉降控制的关键阶段;管幕-梁-桩-柱施工完成后,主体结构变形表现出良好的协同作用,横梁竖向变形表现为车站两端小中间大,边桩及中柱的水平位移在负二层施工期间增长显著,占到了水平位移最大值的47.1%和55.8%,该阶段是控制主体结构变形的关键阶段.  相似文献   

7.
以北京某盾构法施工的区间隧道下穿附近既有地铁车站工程为背景,在确定了合理的应力释放率并充分考虑了分步开挖及注浆加固区影响的基础上,采用三维有限差分计算软件FLAC3D进行了数值模拟.模型采用地层-结构模型,土体采用摩尔-库仑弹塑性模型.此外,隧道和车站结构采用结构单元模拟,既有车站变形缝采用连接单元模拟.预测盾构隧道施工后既有地铁车站的变形,为邻近既有车站的安全评估工作提供了依据.  相似文献   

8.
针对暗挖隧道施工过程中对既有地铁车站的影响,笔者结合实际隧道暗挖工程模拟其施工全过程。结果显示:呈现狭长特性的隧道,其基坑周围地表的最大竖向位移出现在隧道南、北两侧且呈对称分布;基坑地表变形最严重的一层其沉降曲线呈现明显的"凹陷状";随着开挖深度的逐渐增加,隧道北侧地表竖向位移的增加值与其呈现非线性的变化趋势。结论:暗挖隧道施工对于既有地铁车站的影响很小。  相似文献   

9.
为了确保基坑开挖中周边环境的安全,以西安地铁某车站深基坑开挖为例,运用ABAQUS软件建立三维模型模拟开挖对周边地表沉降和围护结构变形的影响,重点研究开挖中周边地表的沉降分布规律和围护结构变形的规律,并与现场实际监测数据进行对比分析。结果表明:地表沉降的实测值比模拟计算值大,但变化趋势基本一致;在基坑开挖过程中,地表最大沉降位置距离基坑边缘约11 m处,最大值为3.298 mm;围护结构水平变形沿开挖深度的变化曲线呈抛物线形,最大水平位移位于基坑最大开挖深度的 1/2 处,最大水平位移为11.05 mm,距基坑长边边缘0~25 m及短边边边缘0~22 m范围内的地表沉降最大,施工监测中应重点关注。  相似文献   

10.
地铁车站洞桩法施工对地层沉降影响研究   总被引:2,自引:0,他引:2  
结合大连地铁松江路车站的工程条件,运用有限元软件MIDAS-GTS建立车站结构-地层三维模型,得出了地表沉降、沉降槽以及塑性区的发展规律.结果表明:地表沉降依照施工过程具有阶段性,导洞施工是控制地表沉降的关键阶段;最大地表沉降及最终地表沉降均符合60mm的控制基准,故洞桩法在控制地表沉降方面是有效的;沉降槽形态及深度受群洞效应影响,且与结构埋深及施工方式有密切关系;塑性区主要产生于导洞阶段,洞桩法基本抑制了塑性区的发展.  相似文献   

11.
盾构下穿地铁运营隧道沉降规律分析   总被引:4,自引:0,他引:4  
为确保盾构安全顺利地下穿地铁运营隧道,避免下穿过程中引起运营隧道过量沉降,影响既有线运营安全,以北京地铁14号线阜通西站~望京站盾构区间隧道下穿地铁15号线运营隧道为工程背景,对左右线盾构2次下穿15号线运营隧道施工过程和沉降情况进行对比分析。在分析右线盾构首次下穿地铁运营隧道结构沉降规律的基础上,制定了左线盾构二次下穿运营隧道的施工参数和相关控制措施,确保了二次下穿运营隧道结构沉降控制在-3 mm以内,取得了良好的效果。研究结果表明:通过设定较高的土压力,采用盾体上的径向注浆孔向盾体和土体之间的空隙注入填充物,提高同步注浆浆液质量和及时进行二次补浆等措施能够有效减小运营隧道结构沉降;盾构施工引起15号线运营隧道的横向沉降范围与施工参数基本无关,左右线穿越有明显的叠加效应,叠加区域内,横向沉降显著影响区域在0~4 D;在不采取超前预加固措施的基础上,仅通过合理设定盾构施工参数和隧道内采取相关措施,能够将15号线隧道结构沉降控制在-3 mm以内。研究结果具有较强的工程实用价值,特别是对盾构下穿运营隧道施工方案的制定具有较强参考价值,也可为国内外类似盾构下穿既有线工程提供借鉴。  相似文献   

12.
匝道桩基穿越既有地铁工程结构附近土层,近距离施工不可避免地对地铁结构产生不利影响。为了解匝道基础工程施工阶段地铁结构及周边地层变化动态,给同类其他工程提供设计和施工依据。对大石—汉溪区间隧道进行了稳定性变形监测。主要阐述该隧道地面沉降、隧道周围土层水平位移和隧道结构及附近土层变形测试方法,变形随时间变化的量测数据及分析。结果表明:桩基钻挖成孔和灌注混凝土时,地面沉降和土层水平位移均不稳定,而隧道结构变形相对稳定;各变形值没有超过报警值,说明该工程采用的施工及监测方法是可行的,对其他同类工程具有借鉴意义。  相似文献   

13.
结合某地铁站深基坑施工,对基坑工程设计中常用的基本参数进行了对比研究. 通过对各参数实测数据的曲线拟合和数值计算得出软土地区深基坑开挖对地表沉降的主要影响范围、沉降最大值及支护主体的最大水平位移,并把实测数据的数值计算结果与经验估算值进行比较,验证经验参数对同类软土地区的实际工程适用性,对地表沉降规律提出了分段分析的方法.  相似文献   

14.
王乃勇 《科学技术与工程》2021,21(32):13919-13925
为研究盾构隧道斜交下穿施工对既有高速公路工程的影响,以某城市轨道交通盾构下穿工程为背景,采用FLAC3D进行盾构施工三维数值模拟,分析了双线盾构施工对公路路面、路堑边坡的影响规律,评价了施工方案的安全性。结果表明:盾构斜交下穿时,路面沉降呈现三维非对称特征,在公路横断面方向,沉降曲线呈现左低右高的线性规律,在公路纵断面方向,沉降曲线呈现左高右低的不对称“V”形,且横断面方向沉降总是大于纵向沉降;边坡竖向位移大于水平位移,以沉降变形为主,开挖面距边坡坡脚水平距离约为2倍洞径时,边坡位移显著增加,该区段为施工强影响区;双线盾构贯通后,路面最大沉降值为3.15mm,纵向沉降变化率为0.0094% ,边坡最大水平位移为1.2mm,三者均小于变形控制标准,公路路基、边坡无塑性区出现,处于弹性状态,盾构下穿施工对既有高速公路影响较小。研究结果可为类似盾构下穿工程提供参考。  相似文献   

15.
临近地铁隧道建造地下通道,需预先评价地下通道开挖对地铁运营安全的影响。结合地下通道工程,针对通道B段垂直正交近距上跨地铁区间隧道等条件,采用Boussinesq解和Mindlin解计算通道开挖卸载产生的附加应力,分层总和法计算地铁隧道产生的回弹位移。结果表明,Boussinesq解和Mindlin解两者计算结果相差不大,Boussinesq解更偏于安全;Boussinesq解和Mindlin解两者计算的地铁隧道底部(轨底)回弹位移均小于1 mm,地铁隧道顶部最大回弹位移分别为6.2 mm、5.3 mm,均满足城市轨道交通线路轨道竖向变形、相对变形曲率、隧道结构绝对沉降量等要求,为地下通道施工的超前控制提供了依据。  相似文献   

16.
收集近年来我国施工安全风险事故发生的数据并进行整理,通过专家调查法确定出大连市地铁一期工程西安路站中存在的主要风险因素;根据各风险因素之间的因果关系,确定出相应的贝叶斯网络模型;该项目施工风险发生概率可以运用以贝叶斯网络为基础的正向因果推理技术进行预测,运用反向推理技术进行施工风险诊断.结果表明:该地铁项目施工安全风险发生概率为0.530,该数据表明地铁项目施工安全整体风险水平为中等等级.确定使大连市地铁一期工程处于危险状态的关键因素为:施工测量数据不准确、施工组织或施工方案不详细及操作过程连接不合理.  相似文献   

17.
张明 《科学技术与工程》2013,13(21):6164-6170
基坑施工降水对邻近地铁隧道产生附加沉降,正确评估其大小及对地铁运营安全的影响具有重要意义。介绍了某工程基坑支护结构及周边复杂环境条件,考虑基坑围护桩人工挖孔桩施工降水实际情况,在某些假定条件下,采用简化大井降水分析方法。分五种工况对围护桩施工降水对邻近地铁隧道产生的附加沉降进行了计算分析。结果表明:考虑降水对地铁最大影响时,地铁隧道产生的最大沉降为5.7 mm,不满足地铁运营线路轨道变形的要求;采用跨三桩施工降水可将地铁隧道产生的附加沉降控制在地铁运营线路轨道变形范围内。针对减少基坑施工降水对地铁隧道的影响,提出了一些建议与措施。  相似文献   

18.
针对城市地铁车站深基坑开挖对邻近建筑物的影响,尤其是富水地层,深基坑施工会诱发邻近建筑物产生较大变形,严重危及既有建筑物正常使用。依托济南轨道交通R2线烈士陵园站深基坑工程,基于现场实测结果分析了围护桩体水平位移、地表沉降和建筑物沉降规律,采用三维数值计算与现场监测数据相互印证,分析了深基坑施工对邻近建筑物变形的影响,并探讨了不同因素对邻近建筑物变形的影响。结果表明:建筑物沉降是由坑外地表变形所造成的,基坑开挖和降水造成坑外建筑物沉降大致相当;减小钢支撑间距,能够降低建筑物的沉降和倾斜,但不宜过密;止水帷幕能够起到有效控制建筑物沉降的效果,随着止水帷幕深度增加到一定程度,控制效果降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号