首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文提出一个不以结合律成立直接作为公理且只用一个条件来描述点态化Fuzzy群的定义定义 论域X上的具有(狭隘)积运算的Fuzzy集A,称为一个Fuzzy群,如果A有称为一元逆的运算,即法则使(?)a_μ∈A,(?)a_μ∈A与之对应,满足条件(x_μy_μ)z_μ=(x_μf_μ)g_μ(?)y_μ=f_μ(g_μ(?)_μ)其中x_μ、y_μ、z_μ、f_μ、g_μ∈  相似文献   

2.
本文证明了参数线性规划 P(λ,μ,θ):min{c~T(λ)x|A(μ)x=b(θ),x≥0}当μ,λ不出现,b(θ)=b_1+F_θ,b_1∈R~m,F 是 m×t 矩阵,θ∈R~t 时,最优顶点集 VS(θ)是下半连续的,还给出了当μ,θ不出现,c(λ)=c_1+H_λ,c_1∈R~n,H 为 n×r 矩阵,λ∈R~r 时,最优顶点集 VS(λ)下半连续的充分必要条件。  相似文献   

3.
本文证明了参数线性规划P(λ,μ,θ):min{c~T(λ)x|A(μ)x=b(θ),x≥0}当μ,λ不出现,b(θ)=b_1+Fθ,b_1∈R~m,F是m×t矩阵,θ∈R~t时,最优顶点集VS(θ)是下半连续的,还给出了当μ,θ不出现,c(λ)=c_1+Hλ,c_1∈R~n,H为n×r矩阵,λ∈R~r时,最优顶点集VS(λ)下半连续的充分必要条件.  相似文献   

4.
在平面上,任给二次曲线Γ:F(x,y)≡a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(12)x+2a_(23)y+a_(33)=0 (1)和一点 M_0(x_0,y_0),则过 M_0的直线 l 的方程可写为x=x_0+Xt,y=y_0+Yt.X:Y 是 l 的方向,-∞相似文献   

5.
讨论了微分方程dy/dx=a_1x b_1y c_1/a_2x b_2y c_2的一般解法,并给出了该微分方程的另一种解法。  相似文献   

6.
得到两个全局性隐函数定理:定理1设D_1是第一可数的拓扑空间E_1的开子集.D_2是Banach空间E_2的开子集.映象f:(?)_1×(?)_2→Y(?)E关于第一变元连续且满足条件:1°|f(x,y_1)-f(x,y_2)|≤L(x)|y_2-y_1|.Ax∈(?)_1.y_1.y_2∈D_2.其中Y=D_2或D_2=Y=E_2,L(x)<1.L:(?)_1→R~+连续.则方程f(x.y)=y有连续解y:(?)_1→Y,即f(x.y(x))=y(x).(?)x∈(?)_1.定理2 设f:(?)_1×(?)_2→C((?)_2)满足条件:1°d(f(x,y_1).f(x,y_2))≤k|y_2-y_1|.(?)x∈(?)_1.y_1.y_2∈(?)_2.其中k<1是常数.d(·,·)表示:对有界闭子集A_1,A_2(?)(?)_2d(A_l,A_2)=sup{|y_1-y_2||y_1∈A_1,y_2∈A_2}2°(?)y∈(?)_2,多值映象,f(·,y)弱下半连续.C((?)_2)为(?)_2的有界闭凸子集类.则包含方程y∈f(x,y)有连续单值解y;(?)_1→(?)_2即y(x)∈f(x,y(x)) (?)x∈(?)_1还给出了对随机映象不动点存在性的一个应用.  相似文献   

7.
系统{dx=a_1x~2+b_1xy+a_2x+b_2y+c_2dt{dydt=a_1xy+b_1y~2+a_3x+b_3y+c_3是一种特殊的二次微分系统.系统(1)的V.I.Arnold问题是该问题中n=2的一种特殊情况.关于V.I.Arnold问题当n=2时的一般情况均已完全解决.(请参阅[1][2][3][4]).本文想从系统(1)右端多项式的系数中构造一个矩阵A,进而通过矩阵A的若唐(C.Jordan)法式.把系统(1)分类,从而由矩阵A的特征根、特征向量来直接确定奋点及其稳定性.  相似文献   

8.
设X,Y为(B)型空间,研究非线性完全连续作用于X带参数y的方程Ф_yx=x—F(x,y)=0设Ф_y0=0(有时φ_y0=0)。若F对x在x=0可微,则Ф_yx=x-F′(0,y)x T(x,y)=0 表Ω为正则值集合,Π为奇异值集合,则i[Ф_y,0]当y在Ω的连通区域D时为常数。设A=F′(0,y_0),y_0∈ΠX_1真为相应于固有值1的固有子空间,由完全连续线性算子理论,有X=X_1 X_2,相应一对投影P_1P_2且存在有逆线性算子R使R(I—A)x=x_2。本文得到如下结论,若y_0∈Πh=y-y_0。足够小F′(0,y)=A—S(h)。 y∈Ω充要条件为Ю_y=P_1RS(h)P_1—P_1RS(h)P_2[P_2 P_2RS(h)P_2]~(-1)P_2RS(h)P_1在X_1中有逆,此时i[Ф_y,0]=i[R,0]i[Ю_y,0]_(X_1)。 x=0是Ф_(y_0)x的孤立零点之充要条件为x_1=0是L_(x_1)=P_1RT(x_1 f(x_1,y_0)y_0)=0的孤立零点,其中x_2=f(x_1,y_0)是P_2x P_2RT(x_1 x_2,y_0)之解。此时i[Ф_(y_0),0]=i[R,0]i[L,0]X_1。最后,我们应用上述结果到非线性方程的分枝解问題。  相似文献   

9.
约定 A(≥0)>0为(半)正定 Hermite 矩阵。如果复矩阵 A=(a_(ij))(∈C~(n×n))的特征值都是实数,规定其特征值满足λ_1(A)≥…≥λ_n(A),用σ_1(A)≥…≥σ_n(A)表示 A 的n 个奇异值,规定{δ_1(A),…,δ_n(A)}与{a_(11),……,a_(nn)}为同一集合且|δ_1(A)≥…≥|δ_n(A)|。当实向量 x=(x_1,…,x_n)与 y=(y_1,…,y_n)的分量按递减顺序排列为 x_[1]≥…≥X_[n]与 y_[1]≥…≥y_[n]时,若(?)X_(i)≤(?)y_[i],k=1,2,…,n,则称 y 弱控制 x,记为 x相似文献   

10.
[1]指出.拓扑空间的积能否推广到古典拓扑Boole格上是一个未解决的问题.本文证明这一推广是可以的. 设{B_1}_1∈△是一族Boole格,用IB表示一切形式为x={x_1)_1∈△(x_1∈B_1)的元的集.设y={y_1}_1∈△(y∈_1∈B_1)是IB的另一元,规定xI=y当且仅当对1∈△,有x_=y_1,规定了这样相等关系的集IB称作{B_1}_1∈△作为集族时的(I)积,记作:IB=(I) B_(1或IB= B_1)·如果(I)积IB中元x={x_1}_1∈△.对某个l_0∈△,有x_(10)=O_(10)是B_(10)中最小元),把所有这样的x看成是相同元,  相似文献   

11.
Hermitian矩阵不等式(英文)   总被引:3,自引:0,他引:3  
考虑复数域上n阶定正的Hermitian方陣。本文結果基于凸函数的一个引理2.1。假定(?)是E~n上的一个凸域,而Φ(x)=Φ(x_1,x_2,…,x_n)是(?)上对称連續凸函数,若x,y∈(?)且滿足(1.1)(x)<(y),則Φ(x)≤Φ(y)。若A,B皆定正,a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n与c_1≥c_2≥…≥c_n分别为A,B与C=A B的特征根,Φ于(?)={x=(x_1,x_2,…,x_n)|x_i>0 i=1,2,…,n}上滿足引理2.1条件且Φ(λx)=λΦ(x) (对任实λ),則Φ(c)≤Φ(a) Φ(b). 习知Φ=(sum from i=1 to n x_i~p)~(1/p),(p>1);sum from i=1 to ∞x_i~p/sum from i=1 to ∞x_i~(p-1),(11)而当p<1(p(?)0)时,上述不等式反号(定理3.6)。若对p取极限导出著名的Minkowski不等式;定理5.1 tr(A B)~p/tr(A B)~(p-1)≤trA~p/trA~(p-1) trB~p/trB~(p-1),(11,q=p/p-1。当p<1(p(?)0)。正文中,經上式直接导出定理3.5与3.6。本文得到的其他結果,例如定理3.1 tr(AB)≤(trA~p)~(1/p)(trB~q)~(1/q),(p>1,1/p 1/q=1)及当p<1(p(?)0)时,不等式反号(定理3.2)以及定理8.1d(r AB)≥(1 1/tr(AB)/n)~nd(A)d(B)等也是有趣的矩陣不等式。  相似文献   

12.
引言从一般的非齐次Lorentz连续变换群出发: x′_μ=a_μ ∑α_(μν)x_ν=f_μ(a;x,α)(1) 或x′~μ=a~μ ∑α_ν~μx~ν=f~μ(a;x,α)(1)从以上不难引出相应于群的无穷小算符:  相似文献   

13.
本文对高阶非线性微分方程组x=f_1(x,y,x,y,x,y)…y=f_2(x,y,x,y,x,y)的某些特殊类型,研究了平凡解的全局渐近稳定性[1],用类比法[2]构造李雅普诺夫函数,得到了全局渐近稳定性的一些充分条件。主要结果为定理2、定理3和定理4。文中具体研究了如下三种类型的方程:和x a_1x a_2y a_3x a_4y f(x)=0…y b_1x b_2y b_3x b_4y g(y)=0x a_1x a_2y f(x) a_4y a_3x=0…y b_1x b_2y b_3x g(y) b_6y=0x f(x) a_2y a_3x a_4y a_5x=0…y b_1x g(y) b_3x b_4y b_6y=0其中ai,bi(i=1.2.…,6)均为常数,f和g具有保证解对初值唯一性的条件。  相似文献   

14.
考虑二阶线性常微分方程的两点边值问题: Lu=f(x),a≤x≤b (1) (I){ a_1u′(a)+a_2u(a)=α,b_1u′(b)+b_2u(b)=β (2) (a_1~2+a_2~2≠0,b_1~2+b_2~2≠0)不失一般性,算子L可看作 Lu=u″(x)-q(x)u(x) (3) 众所周知,方程(1)的通解具有如下迭加结构: u(x)=c_1u_1(x)+c_2u_2(x)+u_f(x) (4)其中u_1,u_2为对应(1)的齐次方程  相似文献   

15.
偶映射定理     
受奇映射定理的启发,本文证明了连续偶映射的Brouwer度为偶数,即偶映射定理.(H)设D(?)R~n是有界对称含0的开集,f:D→R~n是连续偶映射(f(x)=f(-X),(?)X∈D)使O(?)f((?)D)有如下主要结果:1~0如假设(H)满足,则deg(f,D,0)是偶数.2~0如假设(H)满足,R~n的维数n为奇数且f(x)+(λ-1)x≠0,(?)x∈D和λ>1,则f在(?)D上必有零点.3~0如假设(H)满足但R~n的维数n为奇数,则存在y∈(?)D和λ>0(或λ<0)使f(y)=λy.我们进一步按上述内容对全偶连续映时进行了讨论.映射f:D→R~n是全偶的,只要f((-1)~(a1)x_1,…(-1)~(an)x_n)=f(x_1,…x_n),(?)(a_1,…a_n)∈δ_n(0,1),这里δ_n(0,1)={(a_1,…,a_n)|a_i=0或1,(?)i∈{1,2,…,n}}.  相似文献   

16.
如所熟知,在R~2空间中,点P(x,y)分有向线段AB成定比λ时,其中A(x_1,y_1),B(x_2, y_2),则分点P的坐标公式为:(x=(x_1 λx_2)/(1 λ)y=(y_1 λy_2)/(1 λ)本文的目的是将这一公式推广至R(?)空间中的γ-维单形,得到与之相应的定比分点公式。为了便于对照,我们先讨论(1)的一个直接的推广,  相似文献   

17.
本文主要讨论了含单位元的无零因子环内特征与交换的关系,得到如下主要结果: 定理1 设R是一个含单位元且无零因子的环,|R|≥p,且~a∈R,(a+e)~p=a~p+e,则charR=p。 定理2 设R是一个含单位元且无零因子的环,存在质数p>1,p≠CharR,使得~a∈R,(a+e)~p=a~p+e,则R为一个有限域。 定理3 假设1)R是一个特征为零的、含单位元、无零因子的环; 2)~x,y∈R,存在整数a_1,a_2,a_3,b_1,b_2,b_3使得:a_1xy~2+a_2yxy+a_3x~2y+b_1xyx+b_2yx~2+b_3y~2x=0则当R为可换时,(a_1+2b_3)(2a_1+a_2)(b_2+2a_3)(2b_1+b_2)≠0 反之,当此式左端任一因子不为零时,R为一个交换环。  相似文献   

18.
中学课本里,对二元二次方程组只介绍了几种特殊解法。有些二元二次方程组,应用特殊方法求解,是比较困难的。因此,有必要对二元二次方程组的一般解法作一研究。对于二元二次方程组:[a_1x~2+b_1xy+c_1y~2+d_1x+e_1y+f_1=0 (1) a_2x~2+b_2xy+c_2y~2+d_2x+e_2y+f_2=0 (2) ](A)我们在复数体内研究它的一般解法。  相似文献   

19.
本文所讨论的空间F~n是指点集{X|X=(x_1,x_2,……,x_n)0≤x_i≤1,i=1,2,……,n}具有下列各种运算:1.X+Y(?)X∨Y=(x_1∨y_1,……,x_n∨y_n)2.X·Y(?)X∧Y=(x_1∧y_1,……,x_n∧y_n)3.λ·X(?)λ∧X=(λ∧x_1,……,λ∧x_n)其中X,Y∈F~n,λ∈[0,1],且X=(x_1,x_2,……,x_n),Y=(y_1,y_2,……,y_n)若n=∞,则空间F~n变为F~∞.本文初步地探讨空间F~n或F~∞的一些特性,例如:F~n的线性子空间的秩可以无限增大;F~n的线性子空间(?)m不一定具有凸性,但是(?)m具有连通性和列紧性;而作为半序集的F~n是一个无穷的可分配格.  相似文献   

20.
模糊数学深入到代数结构中,继A.Rosenfeld 引入fuzzy 子广群与fuzzy 子群以来,已经出现了fuzzy 环、fuzzy 理想以及fuzzy 向量空间等概念。本文在此基础上引入fuzzy 模的概念。指出分明模与fuzzy 模之间的密切联系:M 是R(?)模,A 是M 的fuzzy 子模当且只当(?)∈λ〔0,1〕,A_λ={x∈M|μ_A(x)≥λ}≠φ是M 的R(?)子模。证明了fuzzy 模的一些简单,性质:若干fuzzy 子模的交,和以及笛卡尔积仍为fuzzy 子模;在分明模同态之下fuzzy 子模的象是fuzzy 子模;象集中fuzzy 子模的逆象是fuzzy 子模。提出了商模的概念以及它的几个关于同态方面的性质。最后讨论了在一类特殊模—弱单模上的fuzzy 子模的一个性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号