首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
对于任意给定的正整数k≥1,环R上的元x,y的k-Jordan乘积定义为{x,y}_k={{x,y}_(k-1),y}_1,其中{x,y}_0=x,{x,y}_1=xy+yx.假设R是含有单位元与非平凡幂等元的环,f∶R→R是满射。文章证明了在一定的假设条件下,f满足{f(x),f(y)}_k={x,y}_k对所有的x,y∈R成立当且仅当f(x)=λx对所有的x∈R成立,其中λ∈Z(R)(R的中心)且λ~(k+1)=1.作为应用,给出了素环与von Neumann代数上保持此类性质映射的完全刻画。  相似文献   

2.
在拓扑混合映射下轨迹对于时间的异常依赖性   总被引:3,自引:0,他引:3  
本文指出在拓扑混合映射的定义域中有非常多的点的轨迹呈现出一种对于时间高度异常的依赖性,即若f:X→X是一个拓扑混合映射,其中X是一个由无限多个点组成的紧緻度量空间,则对于任何正整数递增序列{q_i}和X中任何稠密的可数集S,存在着X的一个c-稠密子集C满足条件:(1)对于任何s∈S,序列{q_i}有一个子序列{q_i}使得(?)(y)=s对于任何y∈C成立,(2)对于任意n>0,C中任意n个点y_1,y_2,…,y_n,和X中任意n个点x_1,x_2,…,x_n,序列{q_i}有一个子序列{t_i}使得(?)(y_j)=x_j,对于每一个j=1,2,…,n成立。  相似文献   

3.
得到两个全局性隐函数定理:定理1设D_1是第一可数的拓扑空间E_1的开子集.D_2是Banach空间E_2的开子集.映象f:(?)_1×(?)_2→Y(?)E关于第一变元连续且满足条件:1°|f(x,y_1)-f(x,y_2)|≤L(x)|y_2-y_1|.Ax∈(?)_1.y_1.y_2∈D_2.其中Y=D_2或D_2=Y=E_2,L(x)<1.L:(?)_1→R~+连续.则方程f(x.y)=y有连续解y:(?)_1→Y,即f(x.y(x))=y(x).(?)x∈(?)_1.定理2 设f:(?)_1×(?)_2→C((?)_2)满足条件:1°d(f(x,y_1).f(x,y_2))≤k|y_2-y_1|.(?)x∈(?)_1.y_1.y_2∈(?)_2.其中k<1是常数.d(·,·)表示:对有界闭子集A_1,A_2(?)(?)_2d(A_l,A_2)=sup{|y_1-y_2||y_1∈A_1,y_2∈A_2}2°(?)y∈(?)_2,多值映象,f(·,y)弱下半连续.C((?)_2)为(?)_2的有界闭凸子集类.则包含方程y∈f(x,y)有连续单值解y;(?)_1→(?)_2即y(x)∈f(x,y(x)) (?)x∈(?)_1还给出了对随机映象不动点存在性的一个应用.  相似文献   

4.
集合A到集合B上的一个一一映射f称为B的一个有效刻画。本文提出的选逆象指标法(SIIIM)给出集A_1={α:α=(I_s,η)~T∈C_s~(n×s)}到象集B_1={β:β=α(α~*α)~(-1)α~*,α∈A_1}的一个有效刻画公式,并证明了B_1是I{2,3}_s的稠密子集,且I{2,3}_s的每个元素都与B_1的某个元素置换相似,利用上述结果,分别建立了I{2,3}和长方阵广义逆矩阵类M{2,3}.的有效刻画公式。再利用等式I{2,3}_s=I{2,4}_s=I{2,3,4}_s,进一步获得了M{2,4},M{2,3,4}的有效刻画公式.算法3.1可用于无重复地计算I{2,3}_s的任一个元素.  相似文献   

5.
对任意一族具有小元的dcpo{Li}i∈I,证明了若每个σ(Li)是连续格,则ⅡLi上的Scott拓扑恰是诸Scott拓扑σ(Li)的积拓扑,得到了关于连续函数way-below关系的一些结果。  相似文献   

6.
设X,Y为(B)型空间,研究非线性完全连续作用于X带参数y的方程Ф_yx=x—F(x,y)=0设Ф_y0=0(有时φ_y0=0)。若F对x在x=0可微,则Ф_yx=x-F′(0,y)x T(x,y)=0 表Ω为正则值集合,Π为奇异值集合,则i[Ф_y,0]当y在Ω的连通区域D时为常数。设A=F′(0,y_0),y_0∈ΠX_1真为相应于固有值1的固有子空间,由完全连续线性算子理论,有X=X_1 X_2,相应一对投影P_1P_2且存在有逆线性算子R使R(I—A)x=x_2。本文得到如下结论,若y_0∈Πh=y-y_0。足够小F′(0,y)=A—S(h)。 y∈Ω充要条件为Ю_y=P_1RS(h)P_1—P_1RS(h)P_2[P_2 P_2RS(h)P_2]~(-1)P_2RS(h)P_1在X_1中有逆,此时i[Ф_y,0]=i[R,0]i[Ю_y,0]_(X_1)。 x=0是Ф_(y_0)x的孤立零点之充要条件为x_1=0是L_(x_1)=P_1RT(x_1 f(x_1,y_0)y_0)=0的孤立零点,其中x_2=f(x_1,y_0)是P_2x P_2RT(x_1 x_2,y_0)之解。此时i[Ф_(y_0),0]=i[R,0]i[L,0]X_1。最后,我们应用上述结果到非线性方程的分枝解问題。  相似文献   

7.
本文将要用到〔3〕中引入的若干概念,为叙述方便,简列于后。集X 到〔0,1〕的一个函数A 称为X 的一个fuzzy 子集;X_1={x∈X|A(x)>0)称为A 的承集。x_λ称为X 上的fuzzy 点;若x_λ(a)={λ当a=x 0 当a≠x a∈X;点x 叫它的承点。x_λ∈A 即0<λ≤A(x);x_λ=y_μ即x=y 且λ=μ;x_λ(?)y_μ即x=y 且λ≤μ。“(?)”是fuzzy 子集A 上的运算:(?)a_λ,b_μ∈A,存在唯一c、∈A,记作a_λ(?)b_μ=c_(?),使当a_(λ′)(?)a_λ,b_(μ′)(?)b_μ时,a_(λ′)(?)b_(μ′)(?)a_λ(?)b_μ,称“(?)”为A 的广义积。当v=min(λ,μ)时,记a_λ(?)b_μ=c_ν为a_λb_μ=c_ν,称为A 的狭隘积,以下仅讨论这种狭隘积。  相似文献   

8.
本文主要证明了下面的结果: 一.设II是一般Boole格L的一族容,则H是L的一个古典拟拓扑开基的充要条件为:对H的每二成分U,V及U∩的非零元x,有W∈H,使在L的完备化云中,有二.设H是古典拓扑一般Boole格的开基,那么对H的每二成分U,V及每元x∈U∩V(x≠0),有W∈H,使  相似文献   

9.
[1]中讲述了Blaschke收敛定理。本文把这个定理推广到了赋范线性空间,并在度量空间中得到了类似的结果。§1 定义和引理设(X,d)是一个度量空间。对X中的集序列{A_n},定义其外极限为集合(?)A_n={x|x∈X,存在一串单调上升的自然数{n_k}及x_(n_k)∈A_(n_k),使x=(?)X_n_k};定义{A}的内极限为集合 (?)A_n={x|x∈X,存在自然数n_0~-及x_n∈A_n(n≥N_0~-)使x=(?)_n};若(?)A_n=(?)A_n=A,则称A为{A_n}的极限,或者说{A_n}收敛于A,记为(?)A_n=A。  相似文献   

10.
设E是完备的距离空间,设{S_i}_(i∈I)是映E到E的映象族,这里I表指标集,它可以是有限集,也可以是可数或不可数的无限集。x_*∈E称为{S_i}_(i∈I)的公共不动点,如果S_ix_*=x_* (?)i∈I.关于完备距离空间中映象的公共不动点问题,最近以来有不少的作者进行过研究.Chi Song Wong在[1]中讨论过两个映象的公共不动点的问题;在T.Mitchell和T·Lau Anthony,Chi Song Wong中分别讨论过映象半群的公共不动点的问题.最近,R·E·Bruck,Anuradha Jaiswal,Bijendra Singh在某些条件下,讨论过非扩张映象的紧致凸半群的公共不动点问题及拓扑半域上度量空间中映象族的公共不动点问题.  相似文献   

11.
设试验点集是X={x(t)=kt b:t∈[0,1],|k|≤B_1,|b|≤B_2},其中B_1>0,B_2>0都是已知数,参数空间={θ:θ∈L_2[0,1]}。被观察的随机过程为 Y(x,t)=∫_0~tθ(u)x(u)du N(t),t∈[0,1]其中{N(t),t∈[0,1]}是Weiner过程。本文得到关于线性泛函脉θ_0~*(θ)=∫_0~1θ(u)du的线性估计的最优设计为ξ_0=(x_1,x_2 α, 1-α)其中x_1=-B_1t-B_2,x_2=B_1t B_2,α满足0≤α<1。在得到这个设计时用到了Spruill[2]的一个定理。发现Spruill[2]中(16)式的证明是错的,因为他的叙述“因是对称的且凸的,对充分小的ε>0,(β-ε)θ~*∈”是错的,本文已将这个错误订正。  相似文献   

12.
设 (X ,J)是一个拓扑空间 ,K是X的一个紧子集 ,α ,β是X的一个开覆盖 ,T :X X连续 ,n是自然数 ,令N(K ,α) =min{ |γ| γ是α对K的子覆盖 } ,H(K ,α) =lnN(K ,α) ,T-1(α) ={T-1(A)A∈α} ,α∨ β ={A∩BA∈α ,B ∈ β} ,h (T ,α ,K) =limn→∞1nH(K ,∨n - 1i=0T-i(α) ) ,h(T ,K) =sup{h (T ,α ,K)α是X的覆盖 } ,则T的拓扑熵定义为 :h(T) =sup{h(T ,K)|K是X的紧子集 }  证明了所定义的连续变换的拓扑熵是拓扑不变量 ;有限个连续变换诱导的乘积空间上的连续变换的拓扑熵不小于各分量变换的拓扑熵 ;连续变换的多次复合的拓扑熵等于其拓扑熵的复合次数倍 .  相似文献   

13.
指出Boole代数类是双格半群类的真子类;有限Boole代数类是F-格半群类的真子类;当格群是Boole代数时,该格群一定是平凡的,同时给出一个双格半群(S, ,≤)是Boole代数的充要条件是:1.存在0∈S,任意x∈S,0≤x,0 x=x 0=x;2.任意x,y∈S,(x⊙y) x=x;3.任意x∈S,存在x′∈S,x⊙x′=x;4.任意x,y,x∈S,x xy=x xz,x⊙y推出x=y.  相似文献   

14.
§1.E.F.Beckenbach(1937)曾引进广义凸性函数的概念,其定义如下.设{F(x)}是一族在(a,b)上连续的函数,它具有性质:对于任何x_1,x_2,a相似文献   

15.
设A是一个集合,B是一个良序集,A.K.Steiner和E.F.Steiner于文〔1〕研究了A~B上的所谓自然拓扑N.对于每一x∈A~B以及α∈β,定义x(α)={y∈A~B、对于B的所有β≤α,y_β=xβ},那么A~B上的自然拓扑N定义为由基B={x(α):x∈A~B,a∈β}所产生的拓扑。显然当A为单点集或者B(表示良序集B的序型)为孤立数时,(A~B、N)为离散空间。又,(A~B、N)是正规空间.A.K.Steiner还研究了拓扑N的度量化问题,得到定理1(定理7,Steiner)如果B是可数良序集,则(A~B,N)可度量化。H.C.Reichel于文〔2〕专门研究了空间(A~B,N)的度量化问题,得到其可度量  相似文献   

16.
§1 引言设S为一可列集,X■{0,1}~S,{0,1}上赋散拓扑,X上赋乘积拓扑。S表示S的一切子集组成的类,S_f表示S的一切有限子集组成的类。■A∈S,令X(A)■{0,1}~A,x∈X在X(A)上的投影记为x_A,特别地,x_a=x_{u}表示x在u处的坐标;F_0表示{0,1}的一切子集组成  相似文献   

17.
设In是集Xn={1,2,3,…,n}上的对称逆半群,且有向路为ρ={(1,2),(2,3),(3,4)…(n-1,n)},令Iρ={α∈In:任意x,y∈dom α,(x,y)∈ρ→(xα,yα)∈ρ}∪{Ф}.证明了Iρ是一个类A子半群,研究了Iρ的Green*-关系,进一步得到Iρ的*理想.  相似文献   

18.
在π.B.康托洛维奇等所著《半序空间泛函分析》一书中,所给KB空间定义中有两个条件:其一是时,则;其二是时,则。其实这两条件是多余的;本文首先对此加以论证。这两条可以由其他几条推出。其次对形成KB空间给一个充要条件。引理1:若x_1≥x>θ;则存在正实数α_n,能使x_n=α_1x_1。证明:取集合T:T:{αx_1|x≤αx_1,α为实数}显见T非空,x_1∈T_n,T_n囿于F,θ就是它的一个下界。因X是K空间,故infT_n存在。于T_n中取α作成集。T_n~*亦是圃于F的集,设α_1=inf{T_n~*} 由于αx_1≤αx_1(αx_1∈T),故αx_1≤inf{T}。若α_nx_1相似文献   

19.
设L是完备格,S(*)L称为L的基,若(*)x∈L,Sx(*)S使得∨Sx=x.称L是基拟原子的,若(*)x∈S且x≠1,(*)y∈L,使得x(*)y因而x(*)y.该文使用the wedge below relation (*)证明完全分配格是完备集环当且仅当L有一个基S(*)L使得L是基拟原子格.又得到使用拓扑方法的如下刻划定理完全分配格是完备集环(*)L的区间拓扑θ(L)(Lawson拓扑λ(L)或双Scott拓扑σω(L))是完全不连通的.  相似文献   

20.
研究了在限定条件下的有序多子集组计数问题,推导了在条件:(A_1∪…∪A_p)∪(B_1∩…∩B_q)=N_n,A_1,…,A_p,B_1,…,B_q■N_n下,集函数x_1~(|A_p|)…x_p~(|A_p|)y_1~(|B_1|)…y_q~(|B_q|)的相关计数式,得到了一个重要的定理:W_(n;p,q)(x,y)=Σ_A1,…,A_p,B_1,…,B_q■N_n(A_1∪…∪A_p)∪(B_1∩…∩B_q)=N_nx_1~(|A_p|)…x_p~(|A_p|)y_1~(|B_1|)…y_q~(|B_q|)={[f(X)-1]g(Y)+y_1y_2…yq}~n,其中f(X)=(1+x_1)(1+x_2)…(1+x_p),g(y)=(1+y_1)(1+y_2)…(1+y_q).并在此基础上,做了一系列推广及应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号