首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以葡萄糖为碳源,以聚乙烯吡咯烷酮(PVP)为表面活性剂,在碱性条件下用水合肼还原氯化铁,采用两步水热法制备Fe3O4/C磁性纳米粒子,并采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对产物进行表征。结果表明:产物为碳包覆纳米四氧化三铁核壳结构,其直径为300~600 nm,晶化程度较高。  相似文献   

2.
以乙醇为溶剂,利用液相还原法制备不同比例的钴镍复合纳米颗粒,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、振动样品磁强器(VSM)等仪器对产物进行表征,考察了复合材料的结构和磁性能。结果表明:通过优化条件,可以成功制备不同比例的钴镍复合纳米晶,该纳米晶的磁性随着钴含量的增加呈现规律性的变化,该材料有望成为一种新型的磁性材料和微波吸收材料。  相似文献   

3.
基于种子生长法并施加适当的后续处理,制备了负载于CeO_2和γ-Al_2O_3载体表面的核壳结构Ag-Ru和中空Ru纳米颗粒。对苯催化氧化活性测试表明,核壳结构Ag-Ru纳米颗粒比中空Ru纳米颗粒具有更好的催化活性,其中负载于CeO_2表面的核壳结构Ag-Ru纳米颗粒的T_(20)和T_(90)可分别低至153.8℃和170.4℃。XPS和H_2-TPR分析均表明在核壳结构Ag-Ru纳米颗粒中,内核Ag的存在可增加壳层组分中金属态Ru的含量,并且可抑制颗粒与载体间的相互作用,可能是导致核壳结构纳米颗粒具有较好苯催化氧化活性的原因。  相似文献   

4.
利用共沉淀结合氢气还原法制备球形核 - 壳结构的γ - FeNi/SiO2纳米复合材料.用X射线衍射(XRD)确定样品的相组成,用透射电子显微镜(TEM)观察样品的形貌,用振动样品磁强计(VSM)测定样品的磁性能.结果表明:pH值是影响核 - 壳纳米结构形貌的重要因素;pH值为9左右且还原温度为700 ℃,制备出的纳米粒子具有近似的球形核 - 壳结构:纳米颗粒是以γ - FeNi合金为核心,其平均粒径大约为80 nm,外面包覆非晶SiO2壳层的核 - 壳结构;随着SiO2质量分数增加,样品的饱和磁化强度明显下降.随着还原温度升高,纳米粒子的尺寸大小略有增加,其饱和磁化强度明显增大,但矫顽力下降,这主要归结于铁镍与铁镍氧化物界面存在交换耦合相互作用.  相似文献   

5.
以静电纺丝法制备的聚丙烯腈(PAN)基碳纳米纤维为原料,铜箔为催化剂,采用化学气相沉积法合成了PAN@石墨烯核-壳纳米纤维.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱和电化学测试对样品的形貌、结构、组成以及电化学性质进行观察和分析.结果表明:化学气相沉积法能有效地制备PAN@石墨烯核-壳纳米纤维,...  相似文献   

6.
采用电化学沉积方法,选择聚乙二醇(PEG-400)和乙二胺(EDA)为添加剂,直接在ITO导电玻璃上制备了有序阵列的ZnO纳米棒,以及ZnO纳米棒上生长纳米棒微纳分级结构。采用化学浴沉积法均匀沉积Sb2S3纳米粒子,制备了Sb2S3/ZnO纳米棒壳核结构和Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)、瞬态光电流等分析手段对其形貌、结构和光电化学性能进行了表征和测试。研究表明,Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构阵列膜的光电流明显高于Sb2S3/ZnO纳米棒壳核结构阵列。  相似文献   

7.
在单分散准球形-αFe2O3纳米颗粒的悬浮液中,在氨碱催化下,CoCl2水解产生的Co(OH)2沉积在-αFe2O3纳米颗粒表面,形成核-壳粒子.经500℃热处理后,壳层物质晶化为立方晶系Co3O4,壳层厚度约为6 nm.不同的氨碱液对核-壳结构产生影响,在1 mol.L-1尿素溶液的催化下,得到均匀的核-壳结构.应用TEM和XRD分析了产物结构,并利用UV-Vis光谱对复合材料的光吸收特性进行了研究.与-αFe2O3纳米颗粒的吸收光谱比较,在光激发下,Co3O4/Fe2O3核-壳粒子光吸收特性发生改变,在可见光区产生新的强吸收峰.  相似文献   

8.
文章以氧化石墨烯(GO)为原料,通过溶剂热法制备钴铁氧体/还原氧化石墨烯复合材料(CoFe_2O_4/rGO)。利用透射电子显微镜(transmission electron microscope,TEM)、高分辨透射电子显微镜(high-resolution transmission electron microscope,HRTEM)、场发射扫描电子显微镜(field emission scanning electron microscope,FESEM)、X射线衍射仪(X-ray diffraction,XRD)等对其进行表征,并研究其对模拟有机染料废水的吸附性能。结果表明:所制备的CoFe_2O_4/rGO复合材料为具有核壳结构的球形纳米颗粒,其平均粒径约为180nm;CoFe_2O_4/rGO能高效吸附阴离子有机染料,对刚果红吸附量高达490.6mg/g,其吸附作用主要是由静电作用力引起的。  相似文献   

9.
采用水热反应法和正硅酸乙酯水解法制备出核壳结构的Au/C纳米球颗粒以及夹层结构的Au/C/SiO<,2>纳米球颗粒,在空气中锻烧将Au/C/SiO<,2>夹层结构中的碳层除去,得到内部带有可移动纳米金核、壳层厚度约为20 nM的中空Au/SiO<,2>纳米球颗粒.用透射电子显微镜对所制得的纳米微球的形貌进行表征,并用红...  相似文献   

10.
纳米粒子由于具有大量的潜在应用,近年来已引起人们极大的关注.通过纳米复合技术(如制备核壳结构的纳米粒子)可以使其获得更多的特殊性质.以氢氧化钡、氢氧化锶、钛酸丁酯为主要原料,采用化学溶液法,在80℃左右的温度下制备了钛酸锶钡纳米晶.硝酸镁和硝酸锌的混合溶液同钛酸锶钡混合并超声搅拌,在室温下制备了具有核壳结构的(Ba,Sr)Ti O3/MgxZn1-xO(BST/MZO)纳米晶.x射线衍射(xRD)和场发射扫描电子显微镜(FESEM)确定所制备样品为纯钙钛矿结构,透射电镜(TEM)表明产品的形貌是核壳结构小球,电子衍射图案进一步证实核和壳均是由十几个到几十个纳米的(Ba,Sr)Ti O3/MgxZn1-xO纳米晶组成的聚集体.采用常规的陶瓷制备技术获得具有核壳结构复合陶瓷,其介电性能明显改善.研究结果表明具有核壳结构的(Ba,Sr)Ti O3/MgxZn1-xO适合作为微波介电材料.  相似文献   

11.
A corona discharge phasma-enhanced chemical vapor deposition with the features of atmospheric pressure and low temperature has been developed to synthesize the carbon nanotube array ,The array was synthesized from methane and hydrogen mixture in anodic aluminum oxide template channels in that cobalt was electrodeposited at the bottom.The characterization results by the scanning electron microscopy,transmission electron microscopy,energy dispersive X-ray spectroscopy and Raman spectroscopy indicate that the array consists of carbon nanotubes with the diameter of about 40 nm and the length of more than 4 μm, and the carbon anotubes are mainly restrained within the channels of templates.  相似文献   

12.
钴离子对聚苯胺/活性炭复合材料制备与性能的影响   总被引:1,自引:0,他引:1  
采用苯胺在活性炭表面原位化学聚合的方法合成了聚苯胺/活性炭(PANI/AC)复合材料。在合成过程中添加钴盐,并研究了钴离子对复合材料结构和电容特性的影响。利用场发射扫描电镜、傅立叶红外光谱仪对其表面微观形态和化学结构进行了对比分析;在6mol/L KOH电解液中,以Hg/HgO为参比电极对复合材料进行了循环伏安、恒流充放电及交流阻抗等电化学性能的测试。结果表明,添加钴盐改性时聚苯胺在活性炭表面包覆的更均匀,循环伏安结果表明添加钴盐改性时复合材料的电化学活性提高,恒流充放电测试结果显示其电容量从不添加钴盐改性时的387F/g提高到了530F/g,提高了将近38.2%,并且显示出良好的大电流充放特性。  相似文献   

13.
Carbon nanotube array plays an important role in the area of nanomaterials due to its potential applications, e.g. as field emitter in flat panel display[1,2] and as template for synthesizing arrays of other important nanomaterials[3]. Anodic aluminum oxide (AAO) template possesses an ordered porous structure that is formed through self-or- ganization during anodization[4,5], and is widely used to synthesize one-dimensional nanomaterial arrays[6]. Carbon nanotubes are usually assembled into t…  相似文献   

14.
用阳极弧法合成了碳纳米管内包覆铁和钴等金属纳米粒子.对合成物用透射电子显微镜(TEM)、X射线衍射(XRD)、电子能谱(EDS)和Raman光谱等方法进行了鉴定和表征.发现包覆粒子的多壁碳纳米管的平均直径约为35nm,其端部和内部包覆的粒子不连续分布、粒径基本均匀,约为20nm.分析了阳极弧等离子体法合成碳纳米管内包覆金属纳米粒子的形成机理.  相似文献   

15.
先制备以Cu部分取代Co的ZIF-67金属有机框架, 并在ZIF-67孔道内引入Pt纳米粒子, 再用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和X射线衍射(XRD)对样品进行物相分析及电化学的传感测试. 结果表明: 贵金属和Cu掺杂共敏化的ZIF-67金属有机框架结晶性较好, 尺寸均匀; 制备的无酶电化学传感器对H2O2具有较好的检测效果, 如较高的灵敏度、 较宽的检测范围、 优异的选择性和较好的可重复性等.  相似文献   

16.
以钴和镍的无机盐为原料,水合肼为还原剂,在水-醇混合溶剂中成功制备出了不同形貌的钴、镍纳米晶,并采用X-射线衍射(XRD)、透射电镜(TEM)、红外波谱分析(IR)等手段对其结构、形貌进行了表征.  相似文献   

17.
纳米钴粉的制备及其在乙醇中的分散性能   总被引:2,自引:0,他引:2  
针对高性能硬质合金的制备基础研究,通过直流电弧等离子体蒸发法制备纳米级钴粉,利用X线衍射(XRD)、X线荧光分析(XRF)、振动磁强计(VSM)、透射电子显微镜(TEM)和相应的选区电子衍射(SAED)等测试手段对样品进行表征。在测定样品粉体于无水乙醇中pH-Zeta电位的基础上,研究超声时间和特定的分散剂及其加入量对分散效果的影响。研究结果表明:直流电弧等离子体蒸发法制备的纳米钴粉为立方晶体结构,纯度(质量分数)达99.923%,粒径分布窄,颗粒呈现球形。随着超声时间和分散剂浓度的增加,纳米钴粉在无水乙醇中的分散效果呈现先增大后减小的趋势;不同分散剂分散效果从优到劣的顺序为:PVP,SHMP,TEA,CTAB和STAN-80。纳米钴粉在无水乙醇中较好分散工艺为:在pH=7的情况下,PVP加入量(质量分数)为2%,超声时间为30 min,超声功率为560 W。  相似文献   

18.
以废旧锂离子电池为原料,柠檬酸为凝胶剂,通过溶胶-凝胶自蔓延燃烧法制备出镧掺杂钴铁氧体,用X射线衍射仪(XRD)、场发射扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和磁致伸缩性能自动测量仪分析所制备样品的晶型、形貌、磁性和磁致伸缩性.结果表明,镧掺杂的钴铁氧体具有尖晶石结构,性能较纯钴铁氧体有所改变,随着La元素掺杂量的增加,样品的饱和磁化强度,磁致伸缩系数,应变导数逐渐减小.当掺杂量x=0.025时,应变导数在较低的磁场下取得最大值-1.18×10-9 m/A,这有利于氧化铁系的磁致伸缩材料在非接触式传感器和执行器方面的应用.  相似文献   

19.
离子轰击碳膜诱导碳纳米尖端的形成和生长   总被引:1,自引:0,他引:1  
用CH4、NH3和H2为反应气体,利用等离子体增强热丝化学气相沉积系统在沉积有碳膜的Si上制备了碳纳米尖端.用扫描电子显微镜、原子力显微镜和Raman光谱表征了碳膜的结构,以及用扫描电子显微镜和X射线光电子谱表征了碳纳米尖端的结构,结果表明碳膜是凸凹不平的非晶碳膜,碳纳米尖端是由sp2结构的碳组成.根据有关离子的溅射和沉积机制,分析了离子轰击碳膜诱导碳纳米尖端的形成和生长.  相似文献   

20.
采用水热合成和煅烧制备氧化钴/碳(Co3O4/C)复合材料,通过SEM、XRD、N2吸附实验等对该材料进行表征.制备的Co3O4/C复合材料为5μm大小,孔径约为30nm的多孔球形结构.在6mol/L的氢氧化钾溶液中进行电化学测试.结果表明,Co3O4/C复合材料具有良好的电容性能.在电流密度为1A/g时,比电容为143F/g.此外,Co3O4/C复合材料还表现出良好的循环稳定性,在1A/g的电流密度下,充放电循环1000次后,比电容保持率为77.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号