首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
用XRD研究高等规聚丙烯腈环化反应的反应度   总被引:2,自引:0,他引:2  
制备了不同三单元等规含量的聚丙烯腈(PAN),在空气气氛下模拟了预氧化过程,考察了温度、时间等条件对PAN环化反应的影响。用X-射线衍射仪(XRD)测定了预氧化物的XRD谱图,对XRD图谱进行分峰计算,求得2θ=16.5°处峰的面积和腈基的反应度。结果表明,随着预氧化环化温度或时间的增加,PAN中CN基团反应度逐渐增加,如反应温度在250℃和300℃的条件下分别预氧化10min,三单元等规度为0.64和0.25的PAN中CN的反应度分别从0.38增加到0.91和从0.21增加到0.71。在相同的预氧化温度或时间的条件下,高等规度PAN分子中CN的反应度总是比低等规PAN的高,最大差值达0.35,且这种差别随温度的增加逐渐减小。  相似文献   

2.
将聚丙烯腈(PAN)纤维在空气气氛中于130~190 ℃范围内进行热处理,通过傅里叶红外光谱(FT-IR)、凝胶渗透色谱(GPC)和元素分析(EA)等方法研究了PAN纤维预氧化初期的结构演变。结果表明:PAN大分子链中的羧酸共聚组分在130 ℃左右时引发分子内环化和分子间交联反应,生成酯羰基结构;随着热处理温度升高,PAN大分子进一步发生环化和脱氢反应,生成—C=N—C=N—共轭结构和—C=C—C=C—共轭结构;当温度高于190 ℃时,PAN大分子开始发生剧烈的环化脱氢反应,生成不饱和芳环结构。  相似文献   

3.
PAN分子环化行为对纤维结构及性能的影响   总被引:2,自引:0,他引:2  
预氧化阶段是链状聚丙烯腈(PAN)分子演变为耐热梯型结构的过程。文中借助IR,X ray及纤维应力形变关系初步探索了PAN纤维预氧化过程中晶区和非晶区分子的环化行为对纤维结构及性能的影响规律。结果表明,PAN纤维在预氧化初期的环化反应主要发生在纤维的非晶区,中后期反应则在晶区和非晶区进行。从预氧化过程中纤维强度及拉伸形变曲线变化规律认为PAN纤维早期的环化反应主要在分子内进行。  相似文献   

4.
将通过自由基聚合得到的聚丙烯腈(PAN)在不同温度下进行预氧化反应,借助X射线衍射(XRD)分析,根据群子统计理论,研究了PAN在预氧化过程中从线形结构到环形有序结构转变的机理,求出了预氧化反应过程中的活化能,探讨了PAN在预氧化过程中成环和成线的竞争关系。研究结果表明,在250~300?℃范围内,预氧化温度越高,越容易进行成环反应,环化度越高;预氧化过程中环化活化能为63.57kJ/mol,成环反应不占优势,环状结构与线性结构共存,PAN只有进一步高温炭化,才有可能使更多的线性结构转化为环状结构。  相似文献   

5.
高等规度聚丙烯腈的合成   总被引:2,自引:0,他引:2  
研究了在不同的反应条件下二丁基镁引发的丙烯腈阴离子聚合反应,得到了等规度较高的聚丙烯腈(PAN),通过对碳的核磁谱图(13C-NMR)分析得出聚合产物中三单元组全同立构、间同立构及无规立构的含量,三单元组等规立构的质量分数可以达到56.49%。将二丁基镁引发的PAN等规立构含量与偶氮二异丁氰(AIBN)引发的自由基聚合得到的PAN等规立构含量进行了比较,通过示差扫描量热分析(DSC)测试,结果表明等规度较高的PAN在预氧化过程中放热量大,易于氧化成环。  相似文献   

6.
用DSC技术研究了丙烯腈共聚物的热行为以查明含卤代羧酸共聚单体对PAN热稳定化过程的影响。实验结果表明:含有溴代羧酸(BrAA),氯代羧酸(ClAA),丙烯酸(AA)及衣康酸(IA)四种共聚物的环化活化能相应为86.2,158,128,102kJ/mol,其中以PAN/BrAA的环化活化能最低,并且与PAN/IA及PAN/AA相比,可以在较高温度下进行热稳定化反应,有助于缩短热稳定化时间。实验还表明,在热稳定化效率方面共聚单体BrAA优于ClAA。对于卤代羧酸共聚物的环化反应机理也进行了讨论。  相似文献   

7.
不同纤度PAN纤维预氧化过程研究   总被引:4,自引:1,他引:3  
采用红外吸收光谱(FT-IR)分析、差示扫描量热(DSC)分析、X射线衍射(XRD)分析等表征手段及纤维密度、皮芯结构测试方法,考察了不同纤度PAN纤维在预氧化过程中的反应、晶体结构和皮芯结构的变化。结果表明:在预氧化后期,相同的预氧化温度下,纤度较小的PAN纤维发生了更多的氧化反应,具有较高的相对环化率和略高的密度;纤度较小的预氧化纤维具有较小的芯,相对容易获得均质结构。  相似文献   

8.
利用自制碳纤维连续化试验线对两类聚丙烯腈(PAN)原丝进行了不同条件的梯度升温预氧化处理,并最终得到碳纤维。采用差示扫描量热分析(DSC)、红外光谱(FT-IR)、广角X射线衍射(WAXD)等表征手段分析了共聚组分对PAN分子链规整度的影响以及分子链规整度对预氧化、炭化过程中纤维结构转变的影响。结果表明,相对于三元共聚PAN纤维,二元共聚PAN纤维由于分子链规整度的提高,与环化反应有关的放热反应相对滞后发生;在相同的预氧化条件下,二元共聚PAN纤维能得到环化度较高的预氧化纤维,所得碳纤维的类石墨晶粒尺寸Lc也较大。结合碳纤维的拉伸强度和拉伸模量数据发现,二元共聚纤维适宜预氧化的温度要高于三元共聚纤维适宜预氧化的温度。  相似文献   

9.
采用“改进Coats-Redfern”法,通过差式扫描量热(DSC)研究了聚丙烯腈(PAN)纤维在惰性气氛中的热稳定化反应动力学,探索了PAN纤维在惰性气氛中的热稳定化反应机理。结果表明:在40~400℃范围内,PAN纤维在惰性气氛中的热稳定化反应总体上符合一级的反应级数模型,计算得到表观反应活化能Ea=177.1kJ/mol;进一步分区通过分区研究和计算,提出了“三区域反应动力学模型”,此模型的计算值与实验值相吻合,能很好地预测PAN纤维在不同升温速率时的热行为;初步提出了PAN纤维在惰性气氛中的热稳定化反应机理。  相似文献   

10.
侯志凌 《太原科技》2014,(3):109-110
预氧化在碳纤维生产过程中起到一个重要的过渡作用,适当的预氧化工艺是制备性能优异碳纤维的基本保障。笔者通过在空气气氛下对PAN基碳纤维进行不同温度热处理,通过调整工艺参数,研究PAN基碳纤维在预氧化过程中分子链内的环状结构形成机制。结果表明:聚丙烯腈原丝在预氧化过程中,自身的官能团发生了脱氢和环化反应,并形成了含有C=N,C-C的梯形结构。热氧化过程中温度低于250℃时,纤维表面含氧量不断增加,主要增加的官能团为羟基、醚键以及羰基。  相似文献   

11.
研究了聚丙烯腈(PAN)纤维在预氧化过程中致密结构的温度时间效应,通过体密度表征纤维的致密结构,并结合其他预氧参数如环化指数、环化度、氧含量及相对环化率的变化,全面分析研究了致密结构的形成演变特征及其梯度预氧化的温度效应和时间效应。结果表明:PAN预氧纤维环化程度的增高有利于致密结构形成,且碳纤维的力学性能与致密结构相关;PAN预氧纤维致密结构的温度效应体现在促进交联芳构化反应上,生成交联环化致密结构;时间效应表现为提高纤维的氧化能力,生成含氧环化梯形的致密结构。  相似文献   

12.
预氧化温度对聚丙烯腈纤维皮芯结构形成的影响   总被引:10,自引:0,他引:10  
在通常预氧化温度条件下,聚丙烯腈(PAN)纤维径向会产生结构不均匀的皮芯结构,从而影响最终炭纤维的力学性能。借助元素分析(EA)、差热分析(DSC)等表征手段和纤维皮芯结构等相关测试方法,系统研究了国内外五种PAN纤维在预氧化过程中生成皮芯结构与预氧化温度之间的关联性及纤维结构性能间的制约机制。研究结果表明:1)210~240℃间纤维的皮芯结构不明显,在240~260℃间预氧化反应剧烈,纤维皮芯比迅速增大,260~300℃范围内纤维皮芯比增长变慢;2)预氧化过程中PAN纤维皮芯结构的变化,与密度及化学反应速率等变化密切相联。因此可采用皮芯结构来表征PAN纤维在预氧化阶段的热化学反应与结构转化的程度。  相似文献   

13.
预氧化阶段是制备活性炭纤维的关键步骤,为了得到均质和力学性能优良的预氧化纤维,采用液相预氧化法制备了聚丙烯腈(PAN)预氧化纤维.研究了PAN原丝在不同时间和温度液相预氧化条件下力学性能的变化,并采用红外光谱、扫描电镜等对纤维的结构和性能进行了分析.结果表明:随着预氧化的时间和温度的增加,纤维的预氧化程度提高,强力降低;预氧化纤维表面光滑,结构均匀,截面无皮芯结构.  相似文献   

14.
采用X-射线衍射、声速仪和红外光谱研究了聚丙烯腈(PAN)纤维在分子热分解—环化演变初期张力的作用,结果表明:在PAN纤维氰基热分解环化初期,张力可以增加纤维中分子聚集态结构的有序化程度;有利于PAN纤维构型的转变和完善原丝原有结构,随张力的增大,PAN纤维的全取向度和结晶度也是增加的;另外,张力可以促进PAN纤维分子的热分解环化反应,尤其是分子内的环化反应,当牵伸达到4%以后可以使微晶尺寸变小,这对提高纤维强度是有利的。  相似文献   

15.
运用自制热机械模试装置对几种商业用PAN原丝在预氧化过程中的热机械行为进行了测定,从收缩应力变化结果发现,其应力变化曲线均存在两个特征峰,即在物理变化区(200℃以下)和化学变化区(200℃以上)内的收缩应力峰。物理收缩应力峰大小与原丝的加工热历史密切相关。对两种不同热历史的PAN纤维进行了连续预氧化及碳化实验,对比了所制得碳纤维的性能,从而通过对PAN纤维的热机械行为测定来评定原丝的质量优劣  相似文献   

16.
预氧化阶段是制备活性炭纤维的关键步骤,为了得到均质和力学性能优良的预氧化纤维,采用液相预氧化法制备了聚丙烯腈(PAN)预氧化纤维.研究了PAN原丝在不同时间和温度液相预氧化条件下力学性能的变化,并采用红外光谱、扫描电镜等对纤维的结构和性能进行了分析.结果表明:随着预氧化的时间和温度的增加,纤维的预氧化程度提高,强力降低...  相似文献   

17.
为了考察Fe对PAN基碳纤维的影响,在凝固成型阶段将Fe引入聚丙烯腈(PAN)初生纤维中,通过后续过程制备含Fe的原丝,经过预氧化、碳化处理后,收取不同阶段的纤维。借助电感耦合等离子体-原子发射光谱(ICP-AES)、电子探针(EPMA)、力学性能测试、热重分析等手段,表征不同热处理阶段PAN纤维中Fe的含量、微区分布的变化及对碳纤维性能的影响。结果表明,含Fe的PAN原丝经预氧化、低温碳化过程,PAN纤维中Fe的质量未发生改变,当热处理温度达到1450℃后Fe开始损失,经1550℃高温处理后Fe的质量大幅度降低;热处理温度高于1350℃后,Fe在PAN纤维的径向逐渐呈现外缘多、内部少的特点,Fe有向纤维外部迁移的趋势;Fe的存在及高温迁移,降低了碳纤维的拉伸强度,影响了碳纤维的热稳定性能。  相似文献   

18.
 综述了近年来高性能聚丙烯腈(PAN)基碳纤维的研究进展,对PAN聚合、原丝制备、预氧化和碳化过程中最为关键的问题进行了总结:(1)聚合工艺对共聚单体在PAN分子链上的分布和溶液的均匀性非常重要。与间歇聚合或半连续聚合工艺相比,连续溶液聚合工艺可以提供更稳定的纺丝溶液,减少聚合过程中微凝胶的产生,并提高PAN原丝乃至碳纤维的均匀性。(2)PAN溶液进行湿法或干湿法纺丝过程中,相分离过程控制对PAN原丝及其碳纤维中微缺陷形成和发展,微缺陷的含量至关重要,并最终影响碳纤维的性能。干燥和牵伸工艺对于优化PAN碳纤维原丝的结晶和取向结构,制备高品质的碳纤维原丝同样起决定作用。(3)预氧化的升温速度、最高预氧化温度和预氧化张力控制对预氧丝的皮芯结构、环化指数及其对后续碳化工序的顺利进行产生重要的影响并影响碳纤维的性能;碳化的最高温度影响PAN基碳纤维的强度和模量。(4)碳纤维的结构与其性能具有直接相关性,中国对相关研究仍然比较缺乏,碳纤维生产技术水平和自主创新能力仍然不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号