首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用力学性能测试、组织观察等方法研究临界退火和不同温度回火对海洋工程用钢显微组织和力学性能的影响.结果表明,实验钢经两相区退火和不同温度回火后,获得了回火马氏体及不同体积分数(0~6%)的残余奥氏体.随实验钢中残余奥氏体体积分数的增加,屈服强度从753MPa降低到506MPa,抗拉强度介于794~843MPa,屈强比从0.9降低到0.6,延伸率从31.3%提高到36.2%.实验钢中残余奥氏体能够提高冲击塑性变形能力并阻碍裂纹扩展,在-80℃冲击功达到236J,然而热稳定性差的残余奥氏体在低温下优先转变成马氏体并降低了低温韧性,冲击功下降到136J.  相似文献   

2.
采用MTS858电液伺服万能试验机、扫描电镜及透射电镜研究回火对一种高强度微合金管线钢疲劳裂纹扩展行为的影响。研究结果表明:回火可提高微合金管线钢疲劳裂纹扩展的门槛值,降低疲劳裂纹扩展速率,但对裂纹扩展稳态区的扩展速率影响不大;回火使碳氮化物沉淀析出、晶间马氏体/奥氏体(M/A)组元由岛状转变为点状及细条状,形成马氏体薄膜结构,阻碍变形和裂纹在材料中扩展,增加裂纹的偏折程度;在控轧控冷终冷温度进行2~4 h回火热处理,可以提高微合金管线钢强韧性和抗疲劳裂纹扩展能力。  相似文献   

3.
利用光学显微镜、扫描电镜、透射电镜和力学性能试验机等手段,系统研究了不同回火温度下低碳贝氏体高强度钢的组织及力学性能变化.结果表明:回火后位错密度的变化、析出相的形态、板条贝氏体的合并粗化和M/A岛的分解是导致力学性能变化的主要原因.600℃回火后屈服强度较热轧态强度提高了35MPa,-40℃冲击功提高了49J,此回火温度下实验钢具有最佳的强韧性配合.回火后低碳贝氏体高强度钢韧性改善主要是由于粗大M/A岛的分解,细小弥散分布的M/A岛可有效阻止裂纹扩展,改善低温冲击韧性.  相似文献   

4.
本文通过电镜动态拉伸和冲击断口形貌,研究了热轧15MnMoVNRE钢粒状贝氏体组织对塑韧性影响的因素。结果表明,在外力作用下,该钢粒状贝氏体组织中裂纹萌生及扩展,主要是在铁素体基体中进行。(M—A)岛的存在阻止裂纹的扩展,并使其改变方向,对塑韧性有利。但如果奥氏体岛分解成珠光体,则对塑韧性不利。  相似文献   

5.
采取正交实验、极差分析等方法对Cr-Mo-V钢调质965 MPa级进行实验,研究淬火及回火工艺对组织及力学性能的影响。实验结果表明:Cr-Mo-V钢经910 ℃淬火,660 ℃+120 min回火后力学性能和韧性匹配最佳;在实验钢的力学性能中,强度和延伸率的主要影响因素为回火温度,冲击韧性的主要影响因素为回火时间;在回火温度660 ℃+保温60 min时,碳化物开始析出,且碳化物的析出量随回火时间的增加而增加。由于在析出物中有许多细小弥散分布的碳化物,并且尺寸适中、圆整度高、均匀分布,减小了冲击时的应力集中,因此韧性得到提高;当回火时间到180 min,析出的碳化物开始聚集长大,韧性略有下降。  相似文献   

6.
研究了5NiCrMo低温钢的淬火+临界淬火+回火(QLT)热处理工艺,分析了回火温度对该钢组织和力学性能的影响。结果表明:试验钢经QLT热处理后,形成了回火马氏体、-铁素体与逆转变奥氏体的混合组织。560-640℃回火时,随温度提高,屈服强度降低,100℃冲击功先升高、在620℃回火时达到峰值后降低。深冷后保留的逆转变奥氏体显著影响试验钢的低温韧性。拉伸和冲击性能均满足要求的回火温度是600-620℃。  相似文献   

7.
借助OM、SEM、EBSD及力学性能测试等手段,研究了回火温度对低碳超高强韧船体结构钢显微组织及力学性能的影响。结果表明,经不同温度(500~650℃)回火2 h后,试验钢的显微组织均为回火索氏体,随着回火温度的升高,钢中析出渗碳体数量及大角度晶界含量逐渐增加;力学性能测试结果显示,试验钢的抗拉强度和屈服强度随回火温度的升高而降低,屈服强度在回火温度区间内均在782 MPa以上,达到超高强度船体钢的要求;试验钢的塑性和韧性随着回火温度的升高有所提升,延伸率和室温冲击吸收功分别保持在12%和212 J以上,且当回火温度为650℃时,试验钢于-80℃下的冲击吸收功高达64 J,这主要与钢中大角度晶界含量有关。  相似文献   

8.
本文用金相硬度法测定了2Cr13钢中温转变动力学曲线,用金相显微镜及透射电镜观察了在不同温度回火后的 M/B 组织形态及其精细结构,并用碳化物萃取复型观察了碳化物析出与分布的特点,对等温组织与普通调质组织在硬度、强度、塑性、韧性、大气与腐蚀疲劳、腐蚀抗力、断裂韧度、疲劳门槛值与裂纹扩展速率诸方面的性能进行了对比和分析。在扫描电镜下分析了疲劳断口形貌。研究表明,等温组织(M/B)在常规力学性能方面均显著优于淬火回火组织,均匀腐蚀抗力较好,大气疲劳强度较高。但在600℃~650℃回火后与调质比较,其断裂韧性较差,腐蚀疲劳强度下降,点蚀电位较低。这与等温组织在热处理过程中沿原奥氏体晶界偏聚析出较多碳化物有关。  相似文献   

9.
对不同终冷温度的X100管线钢进行了动态示波冲击试验,结合断口形貌及微观组织观察,研究了试验温度、终冷温度及组织对冲击断裂过程及止裂性能的影响.结果表明,终冷温度为400℃时,钢的裂纹形成能及扩展能较高,止裂性能良好,仅-60℃时出现少量分层;终冷温度为520℃时,随试验温度降低,裂纹形成能和扩展能逐渐降低,止裂性能逐渐下降,断口中韧窝脆性倾向增强,分层加重.冲击过程中的最大冲击载荷随试验温度的降低而近似线性增加.组织的均匀、板条边界和晶界处的膜状、细小点状M/A岛、细小析出相均有益于钢的冲击韧性及止裂性能.  相似文献   

10.
本文通过对25Si 2Mn2CrNiMoV钢疲劳性能的研究,对它的疲劳裂纹扩展特性和疲劳断裂机制进行了分析,还讨论了疲劳断口和组织之间的关系.试验结果证明:本钢种的疲劳强度σ_(-1)很高,其值高于70kg/mm~2.在200~300℃回火时疲劳裂纹的扩展抗力也很高,此回火温度范围适为钢的最佳强轫配合的回火温度范围.钢中含有2%Si,使回火马氏体脆性出现的温度区间明显推迟.为静强度和疲劳性能同时达到较高的水平创造了条件.  相似文献   

11.
通过光学和电子显微镜,研究了在临界区加热时奥氏体的逆转变过程。结果表明:在低于 A_s 温度加热时,逆转变是以扩散机制在原奥氏体晶界、马氏体领域界和板条周界上首先形成球状奥氏体。当奥氏体球长大到直径约为0.2-0.8微米后,不再继续长大。奥氏体球具有极限尺寸的原因,可用一个简单的模型来解释。在稍低于 A_s 温度加热时,沿马氏体板条周界上形成的奥氏体球大量增加,彼此连结成条片状分布。在 A_s 温度以上加热时,奥氏体以无扩散的切变机制形成板条状的形貌。在γ区和(α γ)区循环热处理时,马氏体领域尺寸获得了细化。在低于 A_s 温度的回火,残留奥氏体量增多,而温度超过 A_s 温度时,回火后残留奥氏体量降低到接近零。当回火温度和时间相同时,马氏体领域尺寸越小则回火后残留奥氏体量愈多。低温拉伸、系列冲击和低温下疲劳裂纹扩展速率等的试验结果得出:改善低温强韧性的组织因素是,α相的充分回复、晶粒的细化和稳定的残留奥氏体。前两个因素的作用更为显著。粗晶态下,残留奥氏体对σ_(0.2),δ_5和 C_V 的影响比细晶态尤为明显。连结成条片状分布的奥氏体较不稳定,在冷却到室温或-196℃后将转变为未回火的马氏体,反而有损于韧性的改善,晶粒细化有助于提高低温疲劳裂纹扩展的抗力。经过两次循环淬火并在580℃(临界区)回火4小时的热处理(2B580)是使铁素体型中锰合金钢获得最佳强韧性的临界区热处理工艺。用这种工艺处理后所获得的主要低温力学性能指标都超过由传统工艺热处理的9%Ni 钢。  相似文献   

12.
通过室温拉伸、摆锤冲击、光学及扫描电镜研究了QT(淬火+回火)工艺对实验钢晶界比例、晶粒尺寸、碳化物析出情况及强韧性的影响,并对其变体的分布及组合方式进行了分析.结果表明:随着回火温度的升高,实验钢强度逐渐降低,塑性逐渐提高;450T和500T钢断口为准解理型断裂,贝氏体板条间析出的碳化物及较低比例的大角度晶界使得冲击韧性较差;而600T和650T钢断口为韧窝断裂,组织中大角度晶界的比例增加,有效地阻碍了裂纹的扩展.变体分析表明,450T钢变体组合方式介于Bain group和CP(close packed)group之间,而600T钢变体之间呈现较明显的CP组合方式,同一CP group内的变体取向差较大,偏折了裂纹传播路径,提高了低温韧性.  相似文献   

13.
用自动冲击试验机和扫描电子显微镜,采用多试样冲击和剖面金相法,研究了具有回火马氏体(30CrMnSiNi_2A),片状珠光体(T_12)组织的两种钢在冲击载荷作用下裂纹形成及扩展的过程,探讨了冲击裂纹形成载荷与断裂最大载荷之间的关系。结果表明:在冲击载荷作用下,不同组织裂纹萌生与扩展的方式并不一样,且冲击裂纹形成不是在冲击断裂最  相似文献   

14.
本文在低碳马氏体型超高强度钢强韧性规律研究的基础上,系统地研究了疲劳断裂规律。试验结果表明,典型钢种25Si2Mn2CrNiMoV通过950℃加热油淬350℃回火,其疲劳强度(σ_(-1),σ_(-1N)等)和裂纹扩展抗力(dα/dN,ΔK_(th)等)可以实现最优化。通过对疲劳裂纹的原位透射电子显微分析,发现了疲劳裂纹尖端塑性区内板条马氏体晶体交界处的残余奥氏体薄膜发生应变诱发马氏体相变,观察到疲劳裂纹扩展过程中组织结构的变化情况,从而讨论了显微组织结构与疲劳断裂行为的对应关系。  相似文献   

15.
本文研究了热处理对GCr15轴承钢断裂韧性K_(Ic)和疲劳裂纹扩展速率da/dN的影响。试验结果表明:基体成分及组织是影响K_(Ic)和da/dN的主要因素;淬火加热温度升高,K_(Ic)降低,da/dN增快;提高回火温度,K_(Ic)增加,da/dN减慢,但在230℃回火时,因处于回火马氏体脆性区,K_(Ic)急烈下降,da/dN增加;在低温回火范围内,淬火加热温度对K_(Ic)和da/dN的影响远比回火温度对这两种力学性能指标的影响强烈。对GCr15钢疲劳断口和疲劳裂纹扩展过程观察后认为:在门槛区附近,疲劳裂纹的扩展以沿晶为主;中速区则以断续的再生核机制进行扩展;快速区至最后断裂阶段表现为准解理和沿晶断。  相似文献   

16.
喷丸强化对疲劳裂纹萌生和扩展的影响   总被引:2,自引:0,他引:2  
本文研究了喷丸强化对疲劳裂纹萌生与扩展的影响及其与材料基本机械性能和残余应力的关系.喷丸强化可大大延长裂纹萌生及早期扩展期,而对扩展期影响较小;应力水平(或过载水平)越低,喷丸的作用越大.喷丸后裂纹萌生及早期扩展期N_(0.1)(sp)与残余应力σ_(?)及形变硬化指数n之间的关系可表达为N_(0.1)(sp)=A+B(-σ_r)~((?)n+b)的形式.  相似文献   

17.
本文对应力腐蚀试验的WoL型恒位移试样作了评述。并用它测最了四种高强度钢(30CrMnSiNi_2 A、30CrMnSiA、40CrNiMo、ZG-18铸钢)在水介质中的止裂K_(ISCC)以及da/dt。对其中的30CrMnSiNi_2A钢研究了热处理工艺对K_(ISCC)、da/dt的影响,同时探讨了强度和组织的作用。结果表明,对同一类处理,随强度下降K_(ISCC)提高。在相同强度时,等温后回火组织的K_(ISCC)明显比马氏体组织和不回火贝氏体组织高得多。当强度σ_b≤130~140公斤/毫米~2时,裂纹扩展特征发生了变化,da/dt也大幅度下降。当σ_b<110公斤毫米~2时在水介质中不再产生应力腐蚀裂纹。 我们用不同曲率(ρ)的恒位移缺口试样(B=20mm)测量了缺口形成应力腐蚀裂纹的界限应力强度因子K_(ISCC)(ρ),结果表明A是材料常数。对σ_b=160公斤/毫米~2的30CrMnSiNi_2A钢,A=426公斤/毫米、σ_b=140公斤/毫米~2的30CrMnSiA以及40CrNiMo钢的A值更高。 根据实验数据,运用线弹性断裂力学对30CrMnSiNi_2A钢(σ_b=160公斤/毫米~2)螺桩的应力腐蚀断裂进行了定量分析,并提出了提高螺桩安全性的具体办法。  相似文献   

18.
采用力学性能测试、金相组织观察、透射电镜以及扫描电镜观察,研究奥氏体化工艺对超深井用V150油套管强韧性的影响。研究结果表明:较高的奥氏体化温度可提高合金元素在奥氏体中的溶解度,但过高的奥氏体化温度会使奥氏体晶粒粗大,导致塑性、韧性下降,890℃为实验钢较优的常规奥氏体化温度;奥氏体化30 min后,实验钢成分和组织分布趋于均匀,油套管的强韧性指标匹配达到最好,保温时间超过45 min后,晶粒开始长大,导致冲击性能有所下降;亚温淬火形成铁素体和贝氏体、马氏体、残余奥氏体的混合组织,可得到超高强度钢希望获得的B/M复相组织,B/M组织中贝氏体能够分割马氏体基体,阻止裂纹扩展,残余奥氏体膜分割马氏体板条,使实验钢在保持足够强度的同时得到很高的韧性;实验钢在800℃亚温淬火后于640℃回火,强度和韧度均到达了V150油套管的目标要求,能够满足条件苛刻的超深井作业需求。  相似文献   

19.
研究了正规化解析函数H的子类B(λ,α,A,B,σ)的Fekete-Szeg不等式,对于任意的f(z)=z+a2z2+a3z3+…∈B(λ,α,A,B,σ)及任意的复参数u,应用解析函数的基本不等式和分析技巧,得到了M1(α,λ,A,B)的精确上界。  相似文献   

20.
车轮钢和轨道钢的微观组织和力学性能对高铁运行的安全性和服役寿命具有决定性影响。该工作采用淬回火和淬火雾冷两种热处理制度制备了具有等轴状铁素体和粒状渗碳体的回火索氏体车轮钢和片状渗碳体分布在铁素体中的索氏体车轮钢。通过优化热处理制度,两种钢的晶粒均在7级,属于细晶组织。对两种组织的钢进行伸试验,两种钢的拉伸强度大于900 Mpa,延伸率大于15%;由于淬回火车轮钢中颗粒渗碳体的弥散强化作用,其强度比淬火雾冷的车轮钢更高。夏比冲击试验表明,在室温下淬火雾冷的车轮钢冲击吸收功高于淬回火车轮钢,但随着冲击温度的降低,淬火雾冷的车轮钢冲击功幅度下降幅,而淬回火钢一直到-20℃韧性几乎不降低。模拟高铁载荷和时速500 km运行下轮轨接触频率,将两种钢与相同轨道钢配副做滚动接触疲劳试验。结果表明:淬回火车轮钢的疲劳寿命更长,裂纹的萌生主要发生在试样的表面和亚表面夹杂物或应力集中处,在表面萌生的裂纹一般会沿一定的角度向内部扩展,然后沿平行于试样表面进行扩展,最后从试样上撕裂下来。裂纹扩展一般沿着夹杂物与基体界面进行;当夹杂物阻碍裂纹前进时,裂纹会绕过夹杂继续扩展。在摩擦之后,车轮轨与轨道钢的硬度都有1~2HRC的硬度下降,组织成分由于发生了再结晶及塑性变形下,条带状碳化物被碾碎等因素,使其与原始组织有了很大的不同。在硬度为34HRC左右时有最好的抗摩擦性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号