首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
采用力学性能测试、金相组织观察、透射电镜以及扫描电镜观察,研究不同回火工艺对超深井用V150油套管强韧性的影响.研究结果表明:650℃为实验钢最优的回火温度;随着回火时间的延长,实验钢强度和硬度不断下降,塑性和韧性不断提高;当回火时间为15~75 min时,强度满足V150钢级要求;当回火时间大于45 min时,韧度满足V150钢级要求;考虑强韧性的最优匹配,兼顾节能降耗,45~60 min为较合适的回火时间;随着回火次数的增加,油套管强度下降,韧性提高,经过650℃,45 min的2次回火后,淬火应力充分释放,残余奥氏体完全转变为回火组织,回火组织更加细小,实验钢有较好的强韧性配合,0℃横向冲击功超过110J,强度仍能满足V150钢级的要求.  相似文献   

2.
对一种新型高强韧微变形钢(GDL-1)的断裂韧性进行了研究,分析了七种不同热处理状态的JR阻力曲线。结果表明,试验钢在经空冷250℃-300℃回火后的裂纹扩展阻力较大,J1C=0.1415-0.1513(MPa.m)、AK=97-120.5(J),其断裂韧性和冲击韧性优于其它状态。扫描电镜和透射电镜分析表明,空冷后新型高强韧GDL-1钢的显微组织为窄束状贝氏体 马氏体和部分残余奥氏体复合组织,残余奥氏体以薄膜形态分割贝氏体板条而形成超细化亚单元,增加了材料的微观塑性。此外,低温回火改善钢的韧性,并使残余奥氏体的稳定性提高,从而使该钢在空冷250℃-300℃回火后具有良好的冲击韧性和断裂韧性。  相似文献   

3.
低碳粒状贝氏体钢强韧化机理的探讨   总被引:3,自引:0,他引:3  
对14SiMn3Mo低碳贝氏体钢的强韧性及组织作了研究。结果表明:该钢连续空冷后,组织为粒状贝氏体,韧性差、屈强比低。经300℃回火可获得良好的强韧性配合,而经400-500℃回火产生回火脆性。根据回火过程中温微组织及残余奥氏体稳定性等方面的变化,探讨了粒状贝氏体钢的强韧化机理在火脆化原因。  相似文献   

4.
马氏体—贝氏体双相轴承钢强韧性和接触疲劳性能的研究   总被引:1,自引:1,他引:0  
本文研究了马氏体等温处理时,贝氏体的相变过程与微观组织、先析贝氏体的强韧化规律和对接触疲劳性能的影响。马氏体等温处理时,贝氏体相变过程分快速和缓慢两个阶段完成。快速阶段奥氏体分解为典型高碳钢下贝氏体,碳化物为ε-碳化物。缓慢阶段分解的为 Fe_3C。马氏体等温处理时,先祈贝氏体分割过冷奥氏体晶粒,细化随后转变的马氏体领域与条束来赢得强度与韧性大幅度共同提高。接触疲劳寿命比低温回火马氏体高70%。  相似文献   

5.
研究了C--Mn--Mo--Cu--Nb--Ti--B系低碳微合金钢915℃淬火和490~640℃回火的调质工艺对钢的组织及力学性能的影响.用扫描电镜和透射电镜对实验钢的组织、析出物形态和分布以及断口形貌进行观察,采用X射线衍射仪分析钢中残余奥氏体的体积分数.结果表明:调质后,实验钢获得贝氏体、少量马氏体及残余奥氏体复相组织,贝氏体板条宽度只有250 nm,残余奥氏体的体积分数随着回火温度的升高而降低,经淬火与520℃回火后残余奥氏体的体积分数为2.1%.调质后析出物的数量激增,6~15 nm的析出物占70%以上.实验钢经过915℃淬火与520℃回火后,其屈服强度达到915 MPa,抗拉强度990 MPa,-40℃冲击功为95 J.细小的析出物及窄的板条提高了钢的强度.板条间有残余奥氏体存在,改善了实验钢的韧性.  相似文献   

6.
在固定除淬火加热温度以外其它各热处理工艺参数的条件下,通过对40Cr钢不同温度亚温淬火的强度、硬度和冲击韧性的研究,确定了40Cr钢在先共析铁素体向奥氏体转变终了温度以下10℃范围内进行亚温淬火,其强度和韧性达到了最佳配合。通过亚温淬火与生产中常用的完全淬火强韧化效果比较,得出40Cr钢亚温淬火后强韧性不低于完全淬火,且在满足使用性能要求的前提下显著降低了淬火加热温度,减少了能源消耗。  相似文献   

7.
采用力学性能测试、金相组织观察、透射电镜以及扫描电镜观察,研究不同回火温度对超深井用超高强高韧套管组织和力学性能的影响规律。研究结果表明:套管经580~700℃回火的组织均为回火索氏体,在580~630℃回火时组织比较稳定,仍然保持着淬火马氏体的位向和形状,在640℃回火时发生铁素体再结晶,在700℃回火时发生组织粗化;与热轧态相比,淬火回火后的塑性和韧性得到了很大提高,在580~700℃回火,未出现第二类回火脆性;随着回火温度的升高,套管的强度和硬度逐渐降低,塑性和韧性逐渐增加;650℃为套管最佳回火温度,回火组织均匀,铁素体再结晶充分,碳化物细小弥散分布,强度达到V150钢级,0℃时横向冲击功接近110 J,强韧性匹配达到最佳。  相似文献   

8.
利用Gleeble-3500热模拟机测量28CrMnMoV钢以不同速度连续冷却时的膨胀曲线,结合差热分析法和金相-硬度法,确定临界点及相变温度点,绘制并分析和应用过冷奥氏体的连续冷却曲线(CCT图),研究实验钢连续冷却时的奥氏体转变.研究结果表明:实验钢过冷奥氏体在高温区可能发生铁素体转变和珠光体转变,中温区可能发生贝氏体转变,低温区可能发生马氏体转变;当冷却速度为0.05~0.5℃/s时,转变产物为多边形铁素体、珠光体和少量贝氏体的混合组织;在1~5℃/s的冷却速度范围内,转变产物为贝氏体;当冷却速度大于5℃/s时,转变产物为马氏体;合金元素Cr,Mo,V有抑制奥氏体扩散分解的作用,以低于1℃/s的速度冷却才会有先共析铁素体和珠光体;锰质量分数较高对贝氏体转变有明显的促进作用,在0.05~10℃/s的较宽速度范围内连续冷却会发生贝氏体转变.根据测得的CCT图指导28CrMnMoV钢的分级控冷工艺,可在减小钢管淬火应力的同时,为V150油套管的高强韧性提供组织保障.  相似文献   

9.
研究了一种低合金双相耐磨钢经均匀化退火和锻造处理后的微观组织和强韧性能.结果表明:经980℃均匀化退火4,8 h和1 150℃锻造处理后,实验钢显微组织主要为板条状马氏体、针状贝氏体及少量残余奥氏体,锻造处理后的晶粒度最小为7.0~7.5级,均匀化退火处理后的晶粒度最大为6.5~7.0级.均匀化退火的保温时间是影响双相耐磨钢力学性能的主要因素,实验钢保温4 h时的冲击韧性和延伸率值高于保温8 h的值.锻造比均匀化退火更适宜于提高低合金双相耐磨钢的强韧性,优化工艺为始锻温度1 150℃、终锻温度800℃、锻造比2.  相似文献   

10.
本文从强韧化低碳马氏体和控制马氏体形态和亚结构出发,研究了以Fe-Si-Mn-Mo-V为基,适当添加Cr和Ni的低碳马氏体型超高强度钢的组织与性能.分析了新钢种在透射电镜下的组织结构特征,对马氏体、板条相界残余奥氏体和碳化物的衍射斑点,进行了标定.研究表明:淬火态下,新钢种的显微组织由四种相(位错马氏体、板条相界残余奥氏体薄膜、ε-碳化物和未溶碳化物)所组成.文中讨论了各组成相对强度和韧性的影响.当950℃淬火300-350℃回火时,新钢种获得了最佳的强韧配合,其抗拉强度大于等于1765.2Mpa(180kg/mm~2),屈服强度大于等于1422Mpa(145ka/mm~2)和断裂韧性(K_1C)值大于等于127.7MN/m~(3/2)(410kg/mm~(3/2)).这表明通过强化韧性较高的低碳马氏体代替韧化中碳马氏体来发展超高强度钢,具有很大的优越性.  相似文献   

11.
本文概述了GCr15钢强韧化研究的现状,分析了影响高碳钢韧性的诸因素。指出:奥氏体晶粒大小、碳化物尺寸及马氏体中含碳量是主要控制因素。为了探索新的双细化途径,本试验采用高温固溶空冷珠光体作为预处理组织,淬火后可以得到奥氏体晶粒度为ASTM11~13级,碳化物尺寸细化到0.4μ以下。文中还对GCr15钢的常规淬火温度作了试验探讨,采用815℃的较低温度淬火可以降低马氏体中含碳量,并使奥氏体及碳化物尺寸得到一定程度的细化。  相似文献   

12.
对 1 4SiMn3Mo低碳贝氏体钢的强韧性及组织作了研究 .结果表明 :该钢连续空冷后 ,组织为粒状贝氏体 ,韧性差、屈强比低 .经 30 0℃回火可获得良好的强韧性配合 ,而经40 0 - 50 0℃回火产生回火脆性 .根据回火过程中显微组织及残余奥氏体稳定性等方面的变化 ,探讨了粒状贝氏体钢的强韧化机理及回火脆化原因  相似文献   

13.
研究采用多步低温等温贝氏体转变工艺处理后60CrNiMo钢组织与力学性能,用金相显微镜、扫描电镜及透射电镜观察60CrNiMo钢相组织,并进行硬度、拉伸和冲击等力学性能测试。结果表明,经淬火+亚温淬火+高温回火处理的60CrNiMo钢可得到细小均匀的二次回火马氏体+铁素体混合组织,其力学性能得到改善;采用三步低温等温贝氏体转变工艺可有效减少材料块状残余奥氏体和细化贝氏体晶粒,从而提高60CrNiMo钢力学性能。  相似文献   

14.
研究了热镀锌用高强TRIP钢的退火工艺对性能的影响和组织演变规律. 结果表明:实验用钢可获得780.00MPa以上的抗拉强度和24.00%以上的断后延伸率;两相区加热温度和贝氏体保温时间对钢的力学性能具有显著影响,两相区加热温度为850℃,贝氏体保温时间为30s时,实验用钢能获得最佳的综合力学性能;在贝氏体中温相变后,仍有部分亚稳奥氏体(碳含量较低)在后续冷却过程中发生马氏体相变,从而导致钢退火后的微观组织由铁素体、贝氏体、残余奥氏体和马氏体组成.  相似文献   

15.
本文研究了Cr17Ni2钢经超高温淬火和不同温度回火(300~650℃)后韧性的变化。结果表明,1200℃超高温淬火不能提高钢的韧性,主要原因是产生了网状δ铁素体和亚结构中一定数量孪晶的出现。1100℃高温淬火获得板条马氏体及板条间分布的残余奥氏体薄膜组织,具有高的韧性。研究表明,Cr17Ni2钢组织、断口和韧性之间有很好的对应关系。  相似文献   

16.
研究了X80钢在不同淬火温度后的组织和力学性能的变化.结果表明,淬火温度为1000℃时,X80钢的奥氏体晶粒严重粗化,导致粗板条贝氏体铁素体的产生,致使X80钢的强度升高、韧性和硬度严重降低;当淬火温度为930℃,并辅以适当的回火处理,可以使X80钢获得以细小针状铁素体为主的组织,从而获得良好的硬度、强度、塑性和韧性的配合.  相似文献   

17.
借助OM、SEM、XRD等手段,对比研究了一步、两步等温贝氏体转变工艺及QPB(淬火+配分+贝氏体转变)工艺对高碳贝氏体钢(w(C)=0.79%)显微组织与力学性能的影响。结果表明,采用一步等温贝氏体转变工艺处理试验钢时,当等温温度同为250℃,随着保温时间的延长,钢中贝氏体转变越充分,块状残余奥氏体尺寸降低,组织更为均匀细小;而在较低温度下(200℃)等温处理时,钢中残余奥氏体含量显著降低,贝氏体铁素体板条更细小,材料的强度和硬度提高,而塑性和韧性下降。两步等温贝氏体转变工艺处理(250℃×24 h+200℃×72 h)的试验钢中贝氏体铁素体板条平均尺寸约为82 nm,残余奥氏体体积分数为21.4%,获得了最佳的综合力学性能,抗拉强度达到2040 MPa,伸长率为12.5%,冲击韧性为21 J。QPB工艺提高了贝氏体转变速率,大大缩短了热处理时间,最终得到马氏体+贝氏体铁素体+残余奥氏体的组织,试验钢同时也获得了良好的强度和塑韧性。  相似文献   

18.
对5Cr8MoVSi钢热处理工艺研究表明,经840℃退火,碳化物类型以M23C6为主,并有少量的MC和M7C3.淬火组织中剩余碳化物以MC和M7C3为主,M23C6型碳化物在淬火加热时大部分溶解.该钢随淬火加热温度升高,淬火马氏体由板条状和针状马氏体混合组织过渡到以板条状马氏体为主.在沉淀硬化的回火温度(485℃)下,淬火针状马氏体仍显示出原马氏体针;而淬火板条状马氏体的板条状方向性几乎被完全切断,显微组织呈均匀化.该钢在1000~1050℃淬火时,残余奥氏体量为10.7%~12.3%,经485℃一次回火时,残余奥氏体量减少不大,因此,应进行二次或三次回火.淬回火HRC硬度最高为58~60.  相似文献   

19.
轴承钢马氏体等温处理的研究   总被引:2,自引:0,他引:2  
本文研究了 GCr15轴承铜在马氏体相变开始温度(Ms)以下不同温度进行等温时,淬火钢的相变过程、显微组织和力学性能。GCr15轴承铜在 Ms 温度以下不同温度与不同时间等温淬火后淬火铜的组成相是:变温马氏体、贝氏体、残留奥氏体和未溶碳化物。未观察到等温马氏体组织。未溶碳化物的量不变,变温马氏体的体积比随着等温温度的降低而增大,贝氏体和残留奥氏体的体积比则随等温温度的降低或等温时间的缩短而减少。等温后冷却时形成的变温马氏体的板条尺寸减小并细化了马氏体的领域。力学性能的测定结果表明:与普通淬火钢相比,经220℃马氏体等温淬火钢的强度提高一倍,冲击值提高近五倍,达到强韧性的最佳配合。此外,220℃马氏体等温淬火钢的接触疲劳寿命亦比普通淬火、回火钢有提高。对于力学性能的改善,从显微组织因素作出了解释。  相似文献   

20.
对SiMnCr试验用钢,分别进行了淬火、等温淬火和空冷处理,并分别利用金相显微镜、扫描电子显微镜和透射电子显微镜进行了显微组织观察,测定了CCT曲线.淬火态下获得板条马氏体和其间的残余奥氏体薄膜组织,等温淬火得到准贝氏体组织,锻造空冷状态下得到以板条马氏体为主含贝氏体和少量位于板条间界的残余奥氏体薄膜复合组织,经300℃回火,无渗碳体析出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号