首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用扭辩分析法研究了硝化棉,双基粘合剂及改性双基推进剂的动态粘弹性。 由硝化纤维素的动态扭辩分析实验,测得硝化纤维素的玻璃化转变阻尼峰,取得硝化纤维素的玻璃化转变温度T_g值。 对双基粘合剂进行动态扭辩分析实验,所得粘弹谱图在较宽的温度范围(-110℃~+200℃)呈现出的四个阻尼峰进行了分析研究,认为硝化甘油对硝化棉在低温为有限溶解,因此在低温-50℃左右出现的阻尼峰与纯硝化甘油的玻璃化转变温度T_g有关。解释了约28℃、133℃、178℃的三个阻尼峰,分别为双基粘合剂体系的玻璃化转变温度T_g,双基粘合剂中硝化甘油的分解温度及硝化棉的玻璃化转变温度。 本文对改性双基推进剂的动态粘弹性也进行了实验研究,从所得热谱图分析了改性双基推进剂的动态粘弹性,并指出推进剂动态粘弹性的实际使用意义。  相似文献   

2.
蒙根 《科学技术与工程》2012,12(24):6142-6147
本文利用差示扫描量热法(DSC)研究了气氛、升温速率、试样量和载气流速对苯乙烯-马来酸酐共聚物(SMA)玻璃化转变温度的影响,并用优化后的条件考察了上海石油化工研究院自制SMA样品的玻璃化转变温度。实验结果表明,在试样量10 mg左右、氮气流速40 mL/min、升温速率20 ℃/min的优化条件下,测定结果良好,经验证,DSC与动态机械热分析(DMTA)所测得的Tg基本一致,表明优化后的条件很适合SMA玻璃化转变温度的测定,此结果有助于SMA的生产和应用。  相似文献   

3.
激光热致相变核-壳微胶囊的合成与性能   总被引:1,自引:0,他引:1  
以甲基丙烯酸甲酯作为主要的核单体,甲基丙烯酸缩水甘油酯作为壳单体,叔胺盐作为壳的改性剂,合成了平均粒径为55nm具有激光热致相变性能的核壳微胶囊。用红外光谱对其结构进行了表征;用透射电镜观察了微胶囊形貌;用示差量热分析法、热重分析法测定了热性能、接触角仪测定了相变前后的亲水性,探讨了对相变效果的影响因素。核聚合物的玻璃化转变温度为56.2℃,壳聚合物的玻璃化转变温度为85.3℃;该微胶囊感激光后发生相变,接触角由初始的20°变为93°。  相似文献   

4.
聚芳醚酮(Poly(oxy—1,4—phenylene carbonyl—1,4—phenylene),简称 PEK)是一种含有苯环的耐高温聚合物。本文用 DSC 法研究了 PEK 的玻礅化转变和熔融行为。PEK 是一种半结晶的高聚物。骤冷的 PEK 再升温时,可以看到十分明显的玻璃化转变过程和冷结晶过程,它的玻璃化转变温度 T_g 为158.2℃,T_g 下的热容变化△C_p 为0.244J/g·K,平衡冷结晶温度 T°(?)为179.9℃,平衡熔融温度 T°m(H)为379.0℃,熔融热△H_m(H)为53.5J/g。骤冷 PEK 在不同温度(250~310℃)等温结晶15min 后,其 DSC 曲线上可以看到数个熔融峰。随结晶温度升高,温度较高的主熔融峰温度 T_m(H)略有升高,温度较低的熔融峰温度 T_m(L)大约在结晶温度以上20℃;温度较高的熔融峰面积△H_m(H)不变,温度较低的熔融峰面积△H_m(L)增加,△C_p 下降,T_g 升高。将骤冷的 PEK 从略高于 T_g 的温度(159.0℃)以不同速率降温,再升温时,可以看到 PEK 玻璃化转变的滞后现象。随降温速度下降,滞后现象变得十分明显。滞后峰面积△H_h 与降温速度的对数呈线性关系。  相似文献   

5.
溶液法合成聚氨酯的形状记忆材料及其性能   总被引:14,自引:0,他引:14  
为了得到玻璃化转变温度高于 75℃、可在工程上应用的聚氨酯形状记忆材料 ,以 MDI、双酚 A环氧丙烷加成物和 1,4丁二醇为原料 ,甲苯为溶剂由两步溶液聚合法制备了一种新型的聚氨酯形状记忆材料 ,用 Fourier红外光谱对聚合物的结构进行了分析。以本工艺合成的聚氨酯形状记忆材料的玻璃化转变温度由 TMA方法测得 ,其温度范围在75~ 90℃之间。该聚合物试样在 10 0℃的记忆形状恢复时间不超过 10 s。研究表明 ,当 MDI的比例增加时 ,所得聚氨酯形状记忆材料的玻璃化转变温度升高 ,形状记忆恢复所需的时间缩短。用这种材料试制了铆钉 ,铆合效果相当好  相似文献   

6.
为了更方便地量化玻璃化转变温度,采用动态剪切流变仪测定了70#和90#基质沥青的黏弹性特征,并结合MHN复数模量主曲线模型,提出了用黏弹性参数直接计算玻璃化转变温度的方法.首先基于MHN模型,采用不同恒温条件下的动态剪切试验频率扫描数据,建立储能模量和损耗模量主曲线;然后计算损耗模量峰值位置的缩减频率,由WLF方程推导出玻璃化转变温度表达式.结果表明:MHN模型能准确地表征基质沥青的储能模量和损耗模量主曲线;由MHN模型确定的玻璃化转变温度随着参考频率的增大而升高.用MHN模型可以有效地确定沥青的玻璃化转变温度,计算值与温度扫描试验测定结果一致.  相似文献   

7.
采用乳液聚合方法,以古龙香精为芯材,甲基丙烯酸甲酯(MMA)、苯乙烯(St)、丙烯酸丁酯(BA)三元共聚物为壁材,固定单体总量改变单体BA的用量制备了系列香精纳米胶囊乳液.对香精纳米胶囊的形貌、尺寸及分布状态进行了研究,经香精纳米胶囊加香处理后棉织物的耐水洗性能进行了测定.结果表明,所制备的香精胶囊为完整球型,平均尺寸为120 nm;BA的加入降低了胶囊的尺寸,提高了其分布的均匀性;胶囊壁材玻璃化转变温度随BA用量的增加而降低;囊壁的玻璃化转变温度及加香处理工艺对加香棉织物的耐水洗性能有显著影响.最有利于获得良好耐水洗性能的单体配比MMA、St及BA的质量比为1.8∶1.2∶1.0,制得的香精纳米胶囊的实测玻璃化转变温度为36.2℃;最佳的加香整理温度为120℃.  相似文献   

8.
对固化后的各向异性导电胶(ACF),利用动态力学分析仪进行了单频和多频温度扫描试验,确定了ACF的玻璃化转变温度,得到玻璃化转变温度与频率的关系式.在不同温度和应变下进行了应力松弛实验,实验发现:在一定(25、80、120 ℃)的温度下,随着应变值的增加,初始应力和在任一时刻的松弛应力都增加;随着温度的提高,应力松弛的松弛率在增加,并且在不同应变下的松弛曲线变得接近;当温度达到玻璃化转变温度附近时,ACF的应力松弛曲线与应变无关.并进行了湿热老化对ACF应力松弛力学行为的实验研究.  相似文献   

9.
热固性聚丙烯酸酯树脂的合成与表征   总被引:1,自引:0,他引:1  
本文以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、甲基丙烯酸羟乙酯(HEMA)、丙烯酸(AA)为原料,过氧化二苯甲酰(BPO)为引发剂,二甲苯、醋酸丁酯作溶剂,采用溶液聚合法合成聚丙烯酸酯预聚体。讨论了反应体系、温度、引发剂用量等因素对聚丙烯酸酯预聚体的分子量及其分布的影响,确定了最佳合成工艺;然后用环氧树脂和邻苯二甲酸酐作为固化剂固化,得到了附着力好,耐水性优异的聚合物涂膜,通过凝胶渗透色谱仪(GPC)、热失重分析仪(TG)、示差扫描量热分析仪(DSC)等对聚丙烯酸酯预聚体及其涂膜的分子量大小及其分布、热稳定性、玻璃化转变温度等进行了研究;GPC测得聚丙烯酸酯预聚体的 =6094, =12101,分子量分布为系数1.9,DSC测得聚合物涂膜玻璃化转变温度为27.8℃,TG测得当聚合物涂膜质量损失20%时温度为378.59℃。  相似文献   

10.
以环丁砜为溶剂合成多取代联苯型聚芳醚酮的研究   总被引:7,自引:1,他引:7  
成功地合成了两种耐温等级很高,可溶解的新型聚芳醚酮;其玻璃化转变温度分别为265℃和295℃,5%热失重温度均在500℃左右,二者均易溶于氯仿,二甲基乙酰胺等多种非质子型极性溶剂。考察了碱,溶剂,反应温度,反 物浓度,脱水方法等对反应的影响。  相似文献   

11.
聚酰亚胺/凹凸棒土纳米复合物制备与表征   总被引:5,自引:0,他引:5  
通过溶液聚合法,以聚酰胺酸(聚酰亚胺前聚体)和凹凸棒土合成制备酰亚胺/凹凸棒土纳米复合物.其结构和性质通过动态力学分析仪(DMA),热失重分析仪(TG),透射电镜(TEM)测定,结果表明,在凹凸棒土含量为3%时,在聚酰亚胺基体中,其分散性较好,而在含量为7%时,凹凸棒土出现部分团聚现象.在使用温度超过330℃时,加入凹凸棒土的纳米复合物的储能模量(E′)下降较慢,玻璃化转变温度Tg和热分解温度均增加15~30℃.  相似文献   

12.
运用等温等压分子动力学方法,在110—210K温度范围内,模拟了60%,70%,80%,90%(均为wt%)的1,2-丙二醇水溶液的比体积与温度的关系,确定了其玻璃化转变温度(Tg)值.实验结果表明,所选的模拟条件和力场能够很好地描述该体系的玻璃化行为,模拟获得的Tg值与实验测定结果相吻合.  相似文献   

13.
高分子量聚丙烯酸改性聚乙烯醇膜的耐水性能   总被引:2,自引:0,他引:2  
将高分子量聚丙烯酸(PAA)与聚乙烯醇(PVA)混合,制备成PAA/PVA混合膜并对其进行热处理。考察了PAA分子量及其含量对混合膜耐水性能的影响,研究了热处理工艺条件对混合膜在沸水环境下的保留率。结果表明,随着PAA分子量和在混合膜中含量的增加,混合膜的耐沸水性能显著提高;当PAA加入量为30%(质量分数),热处理温度和时间分别为160~180℃、3~5min时,混合膜的综合性能最佳;热处理后混合膜的玻璃化转变温度Tg提高到102℃,有效扩大了膜的使用温度范围。  相似文献   

14.
在有氮气、温度为20~280℃和受热时间不同的条件下,对140个花旗松试件的含水率、密度和顺纹抗压强度进行试验;采用扫描电镜揭示高温对木材性能劣化机理.结果表明:木材物理性能和顺纹抗压强度均随着温度升高而非线性降低;当温度低于130℃时,受内部水分释放影响,含水率和密度降低,材色无明显变化,抗压强度由于玻璃化转变温度而降低,且由于含水率降低而增长;当温度为190~220℃时,含水率进一步降低,化学组分开始热降解,其密度、含水率和抗压强度降低,材色开始加深;当温度高于220℃时,木材热解导致颜色急剧加深,密度和抗压强度迅速降低;高温后木材中早材细胞壁多孔性更加突出,热解引起晚材细胞壁厚度变薄,使木材顺纹抗压强度降低.  相似文献   

15.
以玻璃纤维增加塑料(GFRP)-泡沫夹层结构为研究对象,在不同温度条件下,采用拉伸试验确定聚氨酯泡沫芯材料的拉伸性能;经差示扫描量热分析法(DSC)测试GFRP树脂的玻璃化转变温度;通过双悬臂梁(DCB)试验研究,测试不同温度(30、50、70和90℃)条件下,夹层结构的I型裂纹扩展形态和界面应变能释放率,分析温度对GFRP-泡沫夹层结构界面数性能的影响。结果发现:GFRP树脂的玻璃化温度为90℃;温度对聚氨酯泡沫的拉伸强度和拉伸模量影响较小;随着温度的升高,GFRP-泡沫夹层结构的荷载呈下降趋势,界面应变能释放率的峰值越来越大。运用能量释放率断裂准则判别裂纹扩展符合理论要求。  相似文献   

16.
采用两步法合成聚酰亚胺(PI)泡沫,考察3种去除N,N-二甲基乙酰胺(DMAc)溶剂的工艺对PI泡沫性能的影响。以均苯四甲酸酐(PMDA)和4,4′-二氨基二苯醚(ODA)为原料,在DMAc中合成聚酰胺酸(PAA)溶液,用边加水边超声、加水后超声和加水后静置的3种工艺萃取溶剂,最后经高温热亚胺化法制备得到PI泡沫。采用傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、比表面积测试仪、导热系数测试仪、静态热分析仪等考察样品的结构和性能。结果表明:超声处理的泡沫内部主要以层状的网络结构为主,而静置工艺的泡沫内部可见明显孔洞(孔径5~20μm);两种超声工艺制备得到的泡沫导热系数为0.08~0.09 W/(m·K);3种泡沫具有相似的热分解温度和玻璃化转变温度,热分解5%的温度为552~568℃,玻璃化转变温度为325~328℃。因此,PI泡沫具有较好的耐热性。  相似文献   

17.
本文利用对-二氯苯、硫和碳酸钠为原料经Macallum聚合反应,在320—335℃温度范围内制成四种不同组成和结构的聚次苯基硫醚。其中以325—330℃温度下制成的产物具有较佳的性能。经化学分析、红外光谱分析测定其重复单位结构为,其x=1.21~1.24;x—射线衍射、比容—温度关系、形变——温度关系均加以测定,确定其为晶态结合无定形的结构。利用热失重分析,测定其在空气中的热稳定性高达400℃,热裂解活化能在440—475℃范围内为41.4千卡/摩尔。  相似文献   

18.
采用己二异氰酸酯(HDI)三聚体合成了水性聚氨酯(WPU),采用浸渍法将WPU与硫酸化壳聚糖(SCS)通过接枝反应制备出WPU/SCS复合膜. 通过红外光谱、热重分析、差示扫描量热法对复合膜进行了表征,并采用动态凝实验研究了复合膜的血液相容性. 结果表明:WPU与SCS发生了共价结合;复合膜的玻璃化转变温度为53.2 ℃,热分解温度为300~400 ℃;WPU/SCS复合膜的血液相容性优于水性聚氨酯. 因此WPU/SCS复合膜是具有潜力的生物医用材料.  相似文献   

19.
芴基苯并噁嗪单体的合成及热性能研究   总被引:1,自引:0,他引:1  
以双酚芴、环己胺和甲醛为原料,采用混合溶剂法合成了一种新型双官能度芴基苯并噁嗪单体,利用FTIR,1H NMR和13C NMR对产物结构进行了表征,以差式扫描量热仪(DSC)研究了芴基苯并噁嗪单体的固化行为,通过DSC和热重(TGA)分析了聚苯并噁嗪的热性能.结果表明,芴基聚苯并噁嗪树脂呈现出典型的热开环固化特征,放热峰顶温度为251℃,玻璃化转变温度Tg为189.4℃,初始热分解温度(热失重5%)达329℃,800℃时的残碳率达到31%.  相似文献   

20.
紫茎泽兰甲酸和乙酸木素的热解   总被引:1,自引:0,他引:1  
为了利用紫茎泽兰这种外来入侵杂草,采用甲酸和乙酸溶液从其茎秆中提取了甲酸木素和乙酸木素,并在不同升温速率下对木素产品进行了差示扫描量热(DSC)和热重(TG)分析。结果表明:这2种木素具有类似的玻璃化温度(Tg),且升温速率对于玻璃化温度的测定无明显影响。2种木素在氮气氛围下的非等温热解过程可分为4个阶段,其中200~450℃为主要热解阶段。进一步的热解动力学研究发现这2种木素的热解反应在主要热解阶段的低温区(200~300℃)为表观1级反应,而高温区(300~450℃)为表观2级反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号