首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为深入研究拟流场基本特征和流场法探测原理,完善流场法探测堤坝渗漏入口技术,从建立拟流场数学模型入手,通过对有渗漏典型堤坝工程拟流场进行有限元法数值模拟计算,得到了拟流场电位、电场强度及电流密度等主要物理量分布的基本特征。拟流场中电极附近电位、电流密度及电场强度呈尖峰状密集分布,其他区域数据幅值很小,且均匀分布;渗漏通道入口将引起堤坝前局部水域拟流场电流密度和电场强度数值异常突变。模拟结果表明流场法可以探测出渗漏通道入口,探测设备需要具有较小分度值和较强的抗干扰能力。  相似文献   

2.
外加纵向磁场移动焊接熔池流场和传热耦合分析   总被引:2,自引:0,他引:2  
建立了外加纵向磁场移动(GasTungsten Arc Welding,简称GTAW)三维熔池中的电磁场、流场与热场的数学模型,利用ANSYS软件所提供的多耦合场分析功能,对熔池中电流密度与通电线圈产生的磁场分布,以及外加纵向磁场作用下移动GTAW三维熔池的流场与热场进行了研究.研究发现,熔池中的电流密度在熔池中心以外的某一环形区域达到最大值,空心圆柱线圈产生的磁场可以近似为纵向磁场,而且在外加纵向磁场作用下,焊接熔池液态金属做高速旋转运动(0.23m/s),可使熔池呈现“宽而浅”的形状.  相似文献   

3.
为了减少燃料电池在大电流密度运行过程中的电压损失,文章设计了循环蛇形流场,并采用数值方法对其电流密度、反应物浓度和压力分布进行了计算。仿真结果表明,循环蛇形流场在相邻流道之间产生较大的压差,从而增强对流传质,提高了催化层表面反应物浓度和分布的均匀度;在电压为0.4 V时,与多通道蛇形流场相比,循环蛇形流场的电流密度提高了8.3%。  相似文献   

4.
质子交换膜燃料电池(PEMFC)长期运行过程中,其部件因损伤产生的杂质金属离子对燃料电池的电化学性能有重要影响。模拟PEMFC中Ca2+污染燃料电池工况,研究了Ca2+对PEMFC电化学性能的影响。实验结果表明:随着污染时间的增加,燃料电池性能逐渐衰减,当污染时间超过9 h,电池电压急剧降低;在高电流密度区(电流密度>400 mA/cm2),电压衰减最明显。在500 mA/cm2电流密度下恒电流放电2 h后,电压降低了41%。Ca2+的存在及其积累对质子交换膜燃料电池有明显的毒化作用。  相似文献   

5.
目的研究气体扩散层多孔介质渗透率对高温质子交换膜燃料电池(HTPEMFC)性能的影响,优化PEMFC的结构参数,提高电池的整体性能.方法采用多物理场直接耦合分析软件COMSOL Multiphysics,以直通道流场结构的PEMFC在工作电压为0.4V的条件下,对气体扩散层渗透率分别设定为1.18×10-12m2、1.18×10-11m2、1.18×10-10m2以及1.18×10-9m2的HT-PEMFC进行数值模拟和结果分析.结果模拟结果得出了流道内沿流道方向的阴极压力变化、电池电流密度以及阴极气态水浓度的分布情况.结论随着气体扩散层渗透率的增大,能有效降低电池阴极流道内的压降,进而改善电池内部传质、降低额外的功耗,提高电池电流密度以及增强阴极的排水能力.对HT-PEMFC结构的优化和设计具有重要的指导意义.  相似文献   

6.
质子交换膜燃料电池(PEMFC)的性能和耐久性受到燃料的输送和水管理等的限制,流道对PEMFC的质量传输起着至关重要的作用。该文设计了一个三维波形流道,建立了与实验条件一致的单根直流道模型,对比研究了直流道和波形流道对PEMFC性能提升的机理,分析了两种流道内氧气、液态水、速度以及电流密度分布。研究结果表明:在较高电流密度下,三维波形流道强化了狭窄通道部分氧气向催化层的传输,提高了氧气的供应,有效地去除了流道内的液态水,使峰值功率密度提高了10.16%。  相似文献   

7.
采用计算流体动力学(CFD)技术对质子交换膜燃料电池(PEMFC)、阳极燃料气体(H2)流场进行了数值模拟,以最大燃料气体(H2)利用率为目标进行了流场板沟槽尺寸优化.结果表明,当沟槽宽度为1.5mm,脊部宽度为0.5mm和沟槽深度为1.5mm时,燃料气体(H2)的利用率达到最大值84.8%.  相似文献   

8.
温度、压力和湿度对PEMFC堆电效率的影响   总被引:1,自引:0,他引:1  
提高质子交换膜燃料电池(PEMFC)堆的电效率对于PEMFC堆的开发和应用具有重要的意义.研究了操作参数中的温度、压力和湿度对PEMFC堆电效率影响的机理,在此基础上,采用正交实验的方法进一步分析了以上各因素的耦合作用及影响程度、实验结果表明,温度、压力、湿度及温度与湿度的耦合作用对PEMFC堆电效率的影响显著,最优工作条件为温度60℃,压力0.3MPa和湿度100%.  相似文献   

9.
为使质子交换膜燃料电池(PEMFC)内部的电极反应物和电极产物有一个更加稳定与均衡的分布,在燃料电池传统阴极蛇形流道的基础上,对其U形转弯入口及出口处进行渐缩渐扩处理,使流道U形转弯处侧壁形成一定角度的坡面,并建立了缩放坡面流道的单电池三维数值模型。对比研究了不同几何参数对流道内液态水动力学行为、排水效率、反应气体质量分数、电池最大功率密度的影响,结果表明坡面结构在一定程度上引导了液滴的流动路径,使流道底面的气体扩散层(GDL)附近气流扰动增强,氧质量分数和电流密度分布更加均匀,最大功率密度得到了明显提高,整体上提高了PEMFC内部的传质能力。  相似文献   

10.
利用极化曲线、电化学阻抗谱(EIS)、循环伏安(CV)及分区测试技术等表征手段,从不同角度对质子交换膜燃料电池(PEMFC)在低温(0℃)存储和启动工况下的性能衰减进行研究.结果表明:停机过程无气体吹扫的情况下,冻结/解冻循环导致PEMFC极化阻抗增加,电流密度衰减,催化剂电化学活性面积(ECSA)减少,以及分区电流密度分布均匀性下降,直接影响了PEMFC耐久性;基于优化的二次吹扫策略,可在更少吹扫气体用量下,增强吹扫除水效果;通过水浴加热辅助,在340s内成功实现单电池-30℃低温冷启动.  相似文献   

11.
质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)具有广泛的应用前景。为了提升流道构型对于质子交换膜燃料电池的综合性能,通过建立一种三维单相、等温的圆形交错迷宫式流道质子交换膜燃料电池模型,分析新型流道对质子交换膜燃料电池的输出性能、阴极氧和水浓度分布及阴极进气流速的影响。结果表明,圆形交错式流道相较于矩形交错式流道和蛇形流道电流密度提升25%和143%,也可以明显的改善流道内反应物和产物的分布和输运。阴极进气流速的增加可以提升电池的性能,但也会带来其他额外的损耗。可见,圆形交错式流道可以有效提升输出性能,改善氧和水的分布。  相似文献   

12.
质子交换膜燃料电池(PEMFC)不受卡诺循环限制,能量转换效率高,被认为是最有潜力的绿色能源转换装置之一。为了最大程度地发挥燃料电池运行时的潜能,对操作参数控制的优化和研究变得至关重要。使用ANSYS/FLUENT建立了一个采用多平行蛇形流道的三维质子交换膜单体模型,开展不同操作压力(101.325、202.65、303.975 kPa)、进口温度(300、330 K)和散热率[5、40、60 W/(m~2·K)]下的性能变化模拟计算,分析不同操作参数及各参数耦合对燃料电池性能的影响。研究结果表明:各操作参数对燃料电池电流密度和温度的变化和分布情况均有显著影响;燃料电池性能在一定程度上随着散热率、操作压力及其进口温度的增加而升高,随工作电压的增加而下降;当工作电压为0.9 V时,电压对燃料电池性能的影响占据支配地位;当电压为0.5 V、散热率为60 W/(m~2·K)、操作压力为303.975 kPa时,电流密度最大,达到0.81 A/m~2。  相似文献   

13.
为了研究扩散层孔隙率对质子交换膜燃料电池的性能影响,采用计算流体动力学商业软件 ANSYS Fluent在不同扩散层孔隙率(0. 3、0. 5、0. 7)的条件下,对传统平行流场和斜坡平行流场的性能曲线、气体浓度分布、液态 水分布进行数值模拟分析;结果表明:在高电位下各案例对应的性能差异较小,在中低电位性能差异较大,随着扩散层孔隙率越大,质子交换膜燃料电池性能越好,且孔隙率在 0. 3~ 0. 5 时电流密度增长率最大,最大可达 9. 03%;当扩散层孔隙率较高时,有利于反应气体穿过扩散层,使得催化层氧气浓度增大,促进了燃料电池内部的电化学反应;随着扩散层孔隙的增大,能够更有效地促进反应气体的传输,流道内水含量越高,越有利于液态水的排出;相比传统平行流场,斜坡平行流场电池性能更好,氧气分布更均匀,流道中气体流速更大,排水效果更好,且孔隙率为0. 7 时电流密度增长率最大,最大可达 28. 79%。  相似文献   

14.
在已有的质子交换膜燃料电池系统模型基础上添加气体扩散层模型和膜电极组件动态模型,研究膜中水含量的动态特性.仿真结果表明,系统动态模型改进之后其输出性能与实验值误差较小,能够反映外部操作条件变化对电池内部电化学反应和物料传递过程的影响,膜中水含量和输出性能的动态响应过程更加接近实际情况,相关信息可用于间接控制膜中水含量和优化系统.  相似文献   

15.
考虑两相影响的PEMFC内部传递过程三维模拟   总被引:2,自引:0,他引:2  
针对常规流场的质子交换膜燃料电池提出了三维非等温数学模型,在考虑水相变的情况下对电池内部传热传质和电化学反应进行了数值模拟,分析了多孔介质内水蒸气凝结和液态水分布对传递过程和电池性能的影响,并同单相模拟结果进行了对比.计算表明,水蒸气的凝结在降低多孔介质渗透性的同时,加强了反应气体向反应界面的传递;两种模型在高电流密度下阳极均缺水严重,需要更好的水管理;单相模型由于忽略了水蒸气的凝结,实际低估了电池的欧姆极化.  相似文献   

16.
1 Results The effects of different operating parameters on micro proton exchange membrane (PEM) fuel cell performance were experimentally studied for three different flow field configurations (interdigitated,mesh,and serpentine).Experiments with different cell operating temperatures and different backpressures on the H2 flow channels,as well as various combinations of these parameters,have been conducted for three different flow geometries.The micro PEM fuel cells were designed and fabricated in-house t...  相似文献   

17.
交流高压电器中,一般采用多根触指并联的方式提高设备的通流能力。采用有限元法建立了交流高压电器触指处的三维电磁场模型;并通过该模型计算出每根触指的发热功率。根据计算结果发现触指处的电流密度在交变电磁场情况下有着自身的规律。应用此计算模型,研究了触指数目、触指间距、触指位置三种因素对触指发热功率大小的影响,所得结论对交流高压电器触指设计具有较好的指导意义。  相似文献   

18.
福建海坛湾波流双向耦合下水动力特征   总被引:1,自引:1,他引:0  
采用MIKE 21软件中SW(spectral wave)波浪模块和FM(flow model)潮流模块,将潮流模块计算得到的水位与流速输入波浪模型,将波浪模块计算得到的辐射应力输入潮流模型,建立海坛湾波流双向耦合的水动力数学模型.分别计算纯潮流和纯波浪作用下的潮流场和波浪场,计算结果与实测数据吻合良好,再分别对波流双向耦合作用下的潮流场和波浪场进行了模拟.比较结果表明:波流耦合作用对流速和波高都有一定的影响;在波流异向特性明显的区域,波高增大显著;涨落急时刻波高在近岸区域的衰减速率和纯波浪作用下的较一致;落急时刻波高开始显著衰减的位置明显早于涨急时刻;波浪辐射应力在破碎带附近对流速的影响最大.  相似文献   

19.
质子交换膜燃料电池多孔介质中水的两相迁移   总被引:1,自引:0,他引:1  
在混合流动模型的基础上,建立了一个新的二维两相流模型来研究质子交换膜燃料电池内水分的传递规律和分布状态,在该模型中,催化剂层作为一个有厚度的实体包含在电极中.模型耦合了质子交换膜燃料电池电极中的流动方程.组分方程、催化剂层和质子交换膜中的电势和电流密度分布方程,可以应用在质子交换膜燃料电池的阴极,也可以使用在阳极.同时,模型还考虑了相变引起的液相和气相间的动量变化,重点模拟了水分在燃料电池的阴极、阳极和质子交换膜中的传递规律及其分布状态.模拟结果显示:升高加湿温度、提高电流密度和降低电池温度都会使电池质子膜中的水分含量增大,质子传导率升高,也会使阴极中液态水含量增加,阴极浓差极化加剧.  相似文献   

20.
Fluid flow field synergy principle and its application to drag reduction   总被引:2,自引:1,他引:1  
The concept of field synergy for fluid flow is introduced, which refers to the synergy of the velocity field and the velocity gradient field in an entire flow domain. Analyses show that the flow drag depends not only on the velocity and the velocity gradient fields but also on their synergy. The principle of minimum dissipation of mechanical energy is developed, which may be stated as follows: the worse the synergy between the velocity and velocity gradient fields is, the smaller the resistance becomes. Furthermore, based on the principle of minimum dissipation of mechanical energy together with conservation equations, a field synergy equation with a set of specified constraints has been established for optimizing flow processes. The optimal flow field can be obtained by solving the field synergy equation, which leads to the minimum resistance to fluid flow in the fixed flow domain. Finally, as an example, the field synergy analysis for duct flow with two parallel branches is presented. The optimized velocity distributor nearby the fork, which was designed based on the principle of minimum dissipation of mechanical energy, may reduce the drag of duct flow with two parallel branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号