首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一类含时滞反应扩散方程波前解的存在性   总被引:2,自引:2,他引:2  
利用J.Wu和X.Zou(J.Dynam.Diff.Eqns.,2001,13(3):651~687.)建立的解的存在性理论,研究 2u1(x,t) u1(x,t) t=D1b1+a1u2(x,t-τ2)], x2+r1u1(x,t)[1-u1(x,t-τ1) u2(x,t) 2u2(x,t) t=D2b2+a2u1(x,t-τ4)], x2+r2u2(x,t)[1-u2(x,t-τ3)的行波解,其中x∈R,t∈R,ui(x,t)∈R,Di>0,ri>0,ai>0,bi>0,i=1,2,a1a2<1,τj>0,j=1,2,3,4,得到了这个系统波前解存在的充分条件.  相似文献   

2.
设s,t∈N+,(s,t)=1,s>t,且a=2st,b=s2-t2,c=s2+t2.用初等方法证明了当c为素数幂时,丢番图方程x2+b2y1=c2z1仅有正整数解(x,y1,z1)=(a,1,1),推广了相关结果.  相似文献   

3.
设N与P分别表示正态数集与正实数集.在本文内我们得到(1)x~y=y~x在N内的非平凡解(x≠y)只有x=4,y=2与x=2,y=4.(2)x~y=y~x在P内的一切非平凡解只能是x=t~(t/(t-1)),y=y~(1/(t-1)),t∈p,t≠1.(3)在p内不等式x~y>y~x的一切解的公式.(4)1~(?)若x>y>1,则x~y-y~x=1在N内仅有解x=3,y=2.2~(?)x~y-(x+1)~z=1在N内只有解x=2,y=2,z=1.3~(?)(x-1)~y-(x+1)~z=1在N内没有解等等.  相似文献   

4.
通过伪共性变换,将Camassa-Holm方程在孤波Q附近的解做如下分解:λ~(1/2)(t)u(t,λ(t)y+x(t))=Q(y)+ε(t,y),得到了估计式|ε(t,y)|≤Ca_3Te~(-θ|y|)+|λ~(1/2)(t)ε_0|.在H~2空间下,若初值和孤波解Q充分接近,则随着y→∞,对应解仍然和孤波解充分接近且余量ε的能量分布与孤波Q保持一致.  相似文献   

5.
文章研究下面的问题{ytt-yxx+yt=0,(x,t)∈(0,L)×(0,T)y(0,t)=0,yx(L,t)=|y|p-1y+by,t∈(0,T)y(x,0)=y0(x),yt(x,0)=y1(x),x∈(0,L)为了证明这一类非线性波方程局部解的存在性,我们运用了伽辽金方法和嵌入定理得到了想要的结果.证明过程分三步,首先找到问题的逼近解,然后对其进行先验估计,最后通过取极限得到局部解的存在性.  相似文献   

6.
设x,y,z,u为非负整数,用计算机辅助方法给出了丢番图方程1+11x+2y11z=2u,x+z0;1+11x+3y11z=3u,x+z0;1+2x+2y11z=11u,x+y0;1+3x+3y11z=11u,x+y0;1+2x+11y=2z11u,zu0;1+3x+11y=3z11u,zu0的全部非负整数解.  相似文献   

7.
关于商高数     
1.Sierpinski证明了方程3~x+4~y=5~z除x=y=z=2外,无其他正整数解。Jesmanowicz提出猜测:(H)对于正整数a,b,c,x,y,z,如果有a~2+b~2=c~2和a~x+b~y=c~z,  相似文献   

8.
利用简洁初等方法,证明了丢番图方程x2±y4=z6,x2+y6=z4,x4±4y4=z3,x4-y4=2z3均无正整数解,方程x4+y4=2z3,(x,y)=1,仅有正整数解x=y=z=1.  相似文献   

9.
利用丢番图方程x3+y3=2z2的参数解,给出了广义费马方程x3+y3=2z2n(n≥2)的满足x,y互素的整数解.  相似文献   

10.
本文研究了一类双曲微分方程2/t2[u+c(t)u(x,t-τ)]=a0(t)Δu+a1(t)Δu(x,t-ρ)-a∫bq(x,t,ξ)f(u[x,g(t,ξ)])du(ξ)+g(x,t),(x,t)∈Ω×R+≡G,在边界条件下u/N+v(x,t)u=0,(x,t)∈uΩ×R+解的振动性问题,得到c(t)≥1情况下边值问题解的振动条件。  相似文献   

11.
本文研究了下列三阶Fuchs型方程: U_(xyz)+a/(x+y+z)U_(yz)+a/(x+y+z)U_(2x)+c/(x+y+z)U_(xy)+d/(x+y+z)~2U_x +e/(x+y+z)~2-U_y+f(x+y+z)~2U_z+g/(x+y+z)~3U=0 (1)(其中a,b,c……,g均为常数) 的奇柯西问题、奇第三问题及奇第四问题。当方程(1)的系数满足一定关系时,证明这些问题是适定的,并给出了解的表达式。当(1)的系数不满足上述关系时,我们对一个较简单的方程(33),通过Riemann公式建立了其柯西问题解的表达式。  相似文献   

12.
证明了丢番图方程4x4-6x2y2 3y4=z2,(x,y)=1的全部正整数解为(x,y,z)=(x0/2,ab,(3a4 b4)/4), (Xn,2yn,2zn),认为仅有正整数解(x,y,z)=(1,1,1)是不妥的,它漏掉了(xn,2yn,2zn)及(x0/2,ab,(3a4 b4)/ 4);丢番图方程x4-6x2y2 12y4=z2,(x,y)=1的全部正整数解为(x,y,z)=(x0,ab,(3a4 b4)/2),(xn,yn, zn),认为仅有正整数解(xn,yn,zn),则漏掉了(x0,ab,(3a4 b4)/2)。  相似文献   

13.
利用幂比较法证明了:①当a为正偶数、b为正奇数时,不定方程a~x-b~y=1最多有1组正整数解(x,y);②方程x~y-(x-1)~z=1仅有正整数解(x,y,z)=(1,s,t),(2,1,t),(r,1,1)和(3,2,3),其中r,s,t为任意正整数且r≥3.同时推出不定方程2~x-3~y=1仅有正整数解(x,y)=(2,1),不定方程2 018~x-2 019~y=1无正整数解以及不定方程3~x-2~y=1仅有正整数解(x,y)=(1,1),(2,3).  相似文献   

14.
当丢番图方程ax^2+by^2+cz^2+dxy+exz+fyz=gw^2有整数解x0,y0,z0,ω0(ω0≠0),(x0,y0,z0, ω0)=1时给出它满足(x,y,z,ω)=1,ω≠0的全部整数解的公式:{x=ηx-ξm/t,y=ηy0-ξn/t,z=ηz0-ξp/t,ω=ηω0/t其中η=am^2+bn^2+cp^2+dmn+emp+fnp,ξ=2(ax0m+by0n+cz0p)+d(nx0+my0)+e(px0+mz0)+f(py0+nz0),(m,n,p)=l并利用所得结果证明几个推论.  相似文献   

15.
证明了对任意的整数a,b,方程z~2=(x(x+1)(x+2))~2+(y(y+a)(y+b))~2有无穷多整数解(x,y,z).特别的,当a为偶数以及b=a+2,a+4时,该方程有无穷多组满足x■y的整数解.  相似文献   

16.
本文研究了带有时滞的两个物种的合作系统{{(x)(t) =r1x(t) [1-a1x(t-τ) + a2y(t)](y)(t)=r2y(t)[1+a3x(t)-a4y(t)] }的稳定性和分支分析,通过分析特征根的分布得出系统在正平衡点(x*,y*),当τ=(-τ)时存在Hopf分支,进一步应用规范型和中心流形的方法给出了计算分支周期解稳定性和方向的计算公式,最后通过数值模拟验证了理论结果的正确性.  相似文献   

17.
运用初等方法对不定方程ax(x+1)(x+2)(x+3)=by(y+1)(y+2)(y+3)的整数解进行了研究,得到了当a=m4,b=m4-1时方程的非负整数解仅有(x,y)=(0,0)。  相似文献   

18.
关于三元三次型为零的有理数解问题,有过很多工作。但是即使对于(1) x~3+y~3+z~3=xyz,还不知道他是否有xyz≠0的有理数解。在本文中,我们将证明方程(1)和(2) (x~2+y~2+z~2)(x+y+z)=8xyz,(3) x~3+y~3+13z~3=7xyz都没有xyz≠0的有理数解。首先证明方程(1)没有xyz≠0的有理数解。方程(1)如果有有理数解,显然就有整数解。所以毫无损失的可以假设x,y,z都是整数,而且有(4) (x,y)=(y,z)=(z,x)=1.  相似文献   

19.
设a,b,c为两两互素的正整数且满足a2+b2=c2.1956年,Je?manowicz猜测丢番图方程(na)x+(nb)y=(nc)z仅有正整数解x=y=z=2.此利用初等方法证明了:对于任意的正整数n,除去x=y=z=2外,丢番图方程(56n)x+(33n)y=(65n)z,(80n)x+(39n)y=(89n)z和(20n)x+(99n)y=(101n)z无其他的正整数解,即当(a,b,c)=(56,33,65),(80,39,89)和(20,99,101)时,Je?manowicz猜想成立.  相似文献   

20.
设a,b,C是两两互素的正整数,min(a,b,C)>1.论文证明了:当b(?)1(mod 8),c(?)5(mod 8)且c是素数方幂时,如果ax by=cz有正整数解(x,y,z)=(2,2,r),其中r是大于1的奇数,则该方程的例外解(x,y,z)都满足x=2以及y(?)z(?)1(mod 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号