首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
搭载回流无级变速传动装置的插电混合动力汽车在动力切换过程中存在两种切换形式:动力源之间的驱动模式切换和纯无级状态与回流状态之间的调速模式切换,两种切换都会导致动力耦合系统扭矩突变,影响汽车平顺性。在对回流式混合动力系统工作特性分析的基础上,制定了针对不同切换过程的扭矩协调控制策略,并通过MATLAB/Simulink仿真平台进行了验证。结果表明,该策略能够有效地减少该系统切换过程中的转矩波动和冲击。  相似文献   

2.
在混合动力汽车进行E(electric drive mode,纯电动模式)-H(hybrid drive mode,混合驱动模式)切换时,针对2个动力源响应特性差异、离合器接合等原因造成动力传递不平稳及整车冲击的问题,文章制定了扭矩协调控制策略。整个扭矩协调控制策略按发动机的起动、调速和动力接入等3个不同阶段制定,采用Matlab/Simulink搭建混合动力汽车模式切换控制策略模型和整车模型,对该策略的有效性进行验证。仿真结果表明,该策略能够减小扭矩波动和整车冲击度,有效提高模式切换过程的平顺性。  相似文献   

3.
针对采用自动变速箱(AMT)的混合动力汽车存在换挡动力中断问题,提出一种新型双电机混合动力驱动系统,该系统主要包括1台发动机、2个电机和1个四挡变速箱。通过控制发动机、电机、离合器与同步器的工作状态,该混合动力系统可实现纯电动驱动、发动机和电机并联驱动、串联驱动、制动能量回收以及行车发电等多种工作模式。采用集中质量法和牛顿第二定律对该驱动系统进行动力学分析,将其等效为质量-弹簧-阻尼系统,并建立动力学方程。通过查表法建立了发动机和电机模型。结合混合动力驱动系统结构特点,设计模式切换和换挡过程的控制策略,在模式切换和换挡过程中,结合发动机和电机的扭矩响应特性,对发动机和电机输出扭矩进行协调控制。采用基于发动机输出扭矩的电机扭矩补偿策略维持汽车驱动扭矩,避免出现换挡动力中断现象。基于AMESim和MATLAB/Simulink软件平台搭建整车模型及控制策略模型,并对模式切换和换挡过程进行仿真分析。研究结果表明:双电机混合动力驱动系统可实现车辆换挡过程中输出扭矩平顺变化,无动力中断现象;通过限制发动机和电机的扭矩变化率,以及离合器和同步器等执行机构的分离接合速度,可将模式切换和换挡过程的冲击度控制在合理范围内。  相似文献   

4.
为了防止并联混合动力汽车模式切换过程中发生扭矩波动,提出了一种基于干扰补偿的切换快速终端滑模控制方法。首先,在对整车动力结构和驱动模式分析的基础上,根据由纯电动模式向混合驱动模式切换过程中3个阶段内干扰量的不同,分别设计了干扰观测器估计各阶段干扰,将得到的估计值作为系统控制输入。其次,利用快速终端滑模控制和电机补偿发动机扭矩误差的方法,对各阶段干扰估计量进行补偿,通过构造Lyapunov函数证明控制系统的稳定性。最后,对所设计方法分别进行仿真和试验。研究结果表明:该方法在保证整车动力性的同时,确保了模式切换的平顺性,试验的整车最大冲击度降低了52.37%,提高了驾驶性能。  相似文献   

5.
并联式混合动力汽车在伴随发动机起动过程中,由于离合器的动作复杂,在模式切换时极易产生转矩的巨大波动,为此,本文提出了一种动态协调控制方法。通过对切换过程的动力学分析,依据发动机、电机和离合器等所处状态不同,将切换过程分为发动机起动、转速同步和转矩突变3个阶段。综合考虑到各阶段控制目标的不同,分别设计了基于开关控制的发动机起动、基于模型预测控制的转速同步和基于电机补偿发动机转矩突变的动态协调控制策略。利用MATLAB/Simulink软件和搭建的试验平台,对3种动态协调控制方法分别进行了仿真和试验验证。研究结果表明:采用协调控制策略后,整车冲击度降低了68%,有效改善了驾驶舒适性。  相似文献   

6.
结合双离合器自动变速器(DCT)独特的结构型式和性能优势,提出了一种装备DCT的单电机重度混合动力系统,建立了该重度混合动力系统的动力学模型.采用基于规则的方法,以系统效率最优为目标进行了工作模式区域分析与经济性换挡规律分析,制定了混合动力汽车模式切换与DCT换挡的综合工作规律.针对综合工作规律中模式切换点与换挡点相交的情况,提出了模式切换与换挡协调控制策略以及控制方法,并利用Matlab/Simulink软件仿真平台进行了行进间起动发动机与升挡协调控制过程的仿真分析.结果表明:所建立的行进间起动发动机与升挡协调控制策略有效提升了装备DCT的混合动力系统的性能,不仅解决了装备DCT的混合动力汽车模式切换与换挡冲突的问题,同时较大程度地节省了模式切换与换挡时间,充分发挥了装备双离合器自动变速器的混合动力系统的结构优势.  相似文献   

7.
通过分析机电控制无级变速器(electrical-mechanical continuously variable transmission,EM-CVT)的结构特点,提出了搭载EM-CVT混合动力汽车的传动方案,建立了动力源数值模型、EM-CVT模型,分析了混合动力系统工作模式,并针对模式切换时的冲击问题,以减小冲击度为目标,通过分析典型工况下动力源输出转矩特性和各部件的动态特性,提出了基于发动机、ISG电机、自动离合器以及EM-CVT相互协调控制策略。利用MATLAB/SIMULINK仿真平台建立混合动力传动系统动力学模型,并对典型的模式切换过程进行了仿真分析。结果表明,所提出的控制策略能够有效控制混合动力传动系统在模式切换时产生的冲击,提高了混合动力汽车的驾驶舒适性。  相似文献   

8.
针对混合动力汽车模式切换过程中出现的冲击度大、平顺性差等问题,以双行星排式混合动力汽车为对象,进行了发动机启动过程控制策略的研究。首先,对双行星排式动力系统结构和特性进行了分析,并采用隔离法建立了动力系统的动力学模型;然后,以减少车辆纵向冲击度为目标,基于模型预测控制算法,制定了模式切换时的动态协调控制策略;最后,利用仿真模型对动态协调控制策略进行仿真验证。仿真结果表明:相比于无协调控制和传统比例-积分-微分控制,采用模型预测控制方法时,发动机启动时间从0.7 s缩短至0.4 s,模式切换时,整车纵向冲击度的峰值由15.43 m/s~3降至3.12 m/s~3,最大车速偏差从1.98 km/h减小至0.28 km/h,此控制方法有效地保证了汽车的动力性和行驶平顺性。  相似文献   

9.
针对单电机插电式混合动力汽车在纯电动行进间电动机启动发动机时由于系统输出转矩变化进而引起整车冲击的问题,分析得到发动机点火时刻的不同及离合器接合状态的不同是造成转矩波动的原因。在此基础上,提出了基于离合器主、从动盘转速差和电机角加速度为输入量的离合器压力模糊控制的混合动力汽车模式切换动态协调控制策略,并对比了发动机目标转速点火和怠速转速点火的控制效果。最后通过台架试验以及实车道路试验对提出的控制策略进行了验证。结果表明,基于目标转速点火的协调控制策略能减小整车的冲击度。  相似文献   

10.
为了改善功率分流式混合动力汽车模式切换品质,提出了一种基于随机通信时滞补偿的转矩协调控制策略.在一般的电机转矩补偿控制策略的基础上,为提高车辆协调控制系统的精度,揭示了不同通信网络时滞对于电机补偿控制稳定性的影响,提出了增设BP-Smith自适应补偿模块和电机转矩变化率限制模块构成的复合协调控制策略并进行了仿真验证,结果表明,该控制策略在受到随机网络延时的干扰下仍能保证系统的稳定性及模式切换的平顺性.   相似文献   

11.
为了提升前后独立驱动四驱电动汽车的综合性能,提出了一种集成前后轴转矩分配和驱动防滑功能的协调控制策略(coordinated control strategy, CCS)。分别设计了基于经济性最优的前后轴转矩分配控制器和基于滑模控制理论的驱动防滑控制器。在此基础上,设计了集成两种控制器工作效能的协调控制策略。与已有集成控制策略不同,提出的策略不是将转矩分配与驱动防滑两种控制功能简单组合,而是在综合考虑车辆的安全性、经济性和动力性条件下进行合理且有效的集成。在常规工况下,车辆默认遵循经济性原则,同时控制器实时监测各车轮的滑移率。当路面条件恶化、无法满足经济性行驶时,在保证安全性的前提下,进行适当的转矩补偿,最大限度地利用路面附着条件,尽可能保障车辆的动力性不受影响。在MATLAB/CarSim环境下对提出的协调控制策略进行仿真验证的结果表明,在加速踏板开度分别为10%、30%、50%时,与传统集成控制策略(traditional integrated control strategy, TICS)相比,所提出的CCS使车辆的动力性能分别提升15.3%、35.6%、4.5%。  相似文献   

12.
针对智能网联车队行驶过程中车辆跟驰和路径跟踪的横纵向协同控制,建立三自由度车辆动力学模型并将其作为控制系统,基于改进的智能驾驶员模型模型设计分层式纵向控制器;基于预瞄-跟随理论设计横向控制器.考虑车辆纵向、横向运动的耦合特性,以纵向速度作为横向控制器的状态变量设计横纵向协同控制策略,在CarSim/Simulink仿真平台搭建车队横纵向协同控制器.采用单移线、隧道工况验证控制器的横向、纵向控制性能;考虑道路弯道、坡度和超高等道路几何设计,设置匝道工况验证控制器横纵向协同控制性能并分析道路超高对车辆跟驰和路径跟踪精度及稳定性的影响.结果 表明:控制器能实现给定工况下车辆速度与转向的跟踪控制,且具有较高的跟踪精度,良好的跟驰效果和行驶稳定性;对于弯道行驶,设置道路超高能使车辆转向平稳,速度跟随精度高且行车间距增加,有利于提高车队行驶安全性.  相似文献   

13.
为提高三轴重载汽车在转向制动工况下的安全性能,基于TruckSim汽车仿真软件,搭建了三轴重载汽车整车模型。对三轴汽车在转向制动工况下的力学特性进行了分析,基于分析结果设计了削减制动力的三轴汽车转向制动协同控制器。对于车辆处于不足转向的情况,设计了滑移率分配的模糊控制器。采用TruckSim与Simulink联合仿真,对ABS控制和协同控制在转向制动工况下的控制效果进行了探讨。仿真结果表明,在转向制动工况下,与ABS控制器相比,协同控制器提高了三轴重载汽车转向制动工况下的操纵稳定性和制动安全性。  相似文献   

14.
以某先进的串并联混合动力系统为研究对象,提出一种插电式混合动力汽车能量管理策略的逆向解析方法。基于功率流和能量分析,设计试验解析流程,通过实车试验,分别完成对整车动力性、经济性测试及其性能影响分析,在此基础上制定插电式混合动力汽车的能量管理策略。最后基于MATLAB/Simiulink平台及其Simscape模型库,开发了基于实车试验大数据的串并联插电式混合动力汽车仿真平台,通过仿真与实车试验的对比分析,验证了解析策略的正确性。  相似文献   

15.
详细分析了AT动力升档过程的动力学原理,利用Matlab和LMS.Amesim软件搭建动力传动系统联合仿真平台,提出换挡过程分阶段控制策略,在扭矩相采用离合器摩擦转矩定斜率控制;惯性相进行最优跟踪控制,综合考虑换挡冲击度和离合器滑摩功确定性能指标泛函,利用极小值原理求解最优控制律;优化换挡时间,并给出换挡时间的计算流程.仿真和实车试验验证了控制策略的有效性,车辆换挡综合性能得到提升.  相似文献   

16.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

17.
液力变矩器在机械无级变速传动系统中的应用   总被引:1,自引:1,他引:1  
无级自动变速传动作为理想的传动方式,能有效地提高车辆的动力性和燃油经济性,减少排放污染,用液力变矩器作为无级自动变速传动系统的起步装置具有良好的起步性能,且控制简单。在液力变矩器性能试验及锁止离合器闭锁动态过程仿真的基础上,根据发动机与液力变矩器的共同工作特性进行了发动机与液力变矩器的匹配评价,提出了液力变矩器闭锁控制规律以及用液力变矩器仟民步装置的机械无级变速传动系统的起步控制策略。经汽车起步、加速过程的仿真结果表明,与装备五档手动变速器的汽车相比,装备机械无级变速器的汽车具有良好的起步和加速性能。  相似文献   

18.
无级变速汽车传动系综合控制策略   总被引:1,自引:0,他引:1  
无级变速汽车传动系控制策略是开发无级变速传动系的理论基础.为提高无级变速汽车的综合性能,建立了无级变速传动系整车模型,研究了无级变速传动系统的特性,提出3种典型的换档策略,并对综合模式控制策略进行了仿真研究.结果表明,综合控制模式可实现车速与发动机的分别控制,在保证汽车动力性的同时,达到燃料经济性的最佳值.  相似文献   

19.
为提高混合动力汽车的智能化控制水平,进一步改善整车燃油经济性和动力性,提出一种多能源动力总成的多智能体协调控制方法.以并联式混合动力汽车为原型,建立动力总成部件子系统智能体模型,构建多智能体系统协调控制框架,根据不同工况模式对总成动力进行预分配,利用单智能体的智能行为和多智能体的协作能力解决车辆对复杂路况的自适应问题.在Cruise软件环境下对智能体控制系统和协调控制策略进行了仿真验证,结果表明,动力总成的多智能体协调控制策略正确可行,使混合动力汽车能根据不同工况自适应控制模式,进而对动力进行自适应匹配,能够改善整车燃油经济性和动力性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号