首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 119 毫秒
1.
洪绍方在 2002 年证明了如下结果: 若 $S$ 为 gcd 封闭集且 $|S| \leq 3$, 则在 $|S|$ 阶整数矩阵环 $M_{|S|}(\mathbf{Z})$ 中,GCD 矩阵 $(S)$ 整除 LCM 矩阵 $[S]$. 设 $e\geq 1$ 为给定的整数. 在本文中,我们给出了关于四元 gcd 封闭集 $S$ 的充分必 要条件,使得在环 $M_4(\mathbf{Z})$ 中, 定义在 $S$ 上的 $e$ 次幂 GCD 矩阵 $(S^e)$ 整除 $e$ 次幂 LCM 矩阵 $[S^e]$. 这部分解决了洪绍方在 2002 年提出的一个公开问题.  相似文献   

2.
设S是由n个不同的正整数组成的集合,并设整数a大于等于1,如果n阶矩阵的第i行j列元素是S中元素xi和xj的最大公因数的a次幂,则称该矩阵是定义在S上的最大公因数(GCD)的a次幂矩阵;类似定义LCM的a幂矩阵.作者证明了:若S由两个互素的因子链构成,如果a整除b,那么GCD a次幂矩阵的行列式整除GCD b次幂矩阵的行列式;LCM a次幂矩阵的行列式整除LCM b次幂矩阵的行列式;GCD a次幂矩阵的行列式整除LCM b次幂矩阵的行列式.  相似文献   

3.
设S={x1,x2,…,xn}是惟一分解整环R上的不同元素构成的集合,e≥1是一个正整数.(xi,xj)和[xi,xj]分别表示xi,xj的最大公因子和最小公倍数.S称为因子封闭集(简称FC集),如果对S中的任何元xi,它的任意一个因子是S中的一个元的相伴元.以(xi,xj)的P次方为i行j列元素的矩阵称为GCD幂矩阵,记为(S^e);以[xi,xj]的e次方为i行j列元素的矩阵称为LCM幂矩阵,记为[S^e].作者证明了若S是FC集,则(S^e)整除[S^e],即[S^e]等于(S^e)与R上另一个矩阵的乘积,推广了Bourque和Ligh在1992年所得的结果.  相似文献   

4.
最大公因子封闭集上幂矩阵行列式的整除性   总被引:4,自引:4,他引:0  
设S=x1,x2,...,xn是由n个不同的正整数组成的集合,并设整数a≥1.如果n阶矩阵的第i行j列元素是S中元素xi和xj的最大公因数的a次幂(xi,xj)a,则称该矩阵是定义在S上的a次幂GCD矩阵,用(Sa)表示.类似可定义幂LCM矩阵[Sa].作者证明了:若S是由n个不同的正整数组成的一个最大公因子封闭集,且a|b,如果n≤3,那么det[Sa]|det[Sb],det[Sa]|det[Sb];如果max{xi}xi∈S<12,那么det[Sa]|det[Sb],det[Sa]|det[Sb].  相似文献   

5.
设S={x_1,x_2,…,x_n}是由n个不同的正整数组成的集合,并设整数a≥1. 如果n阶矩阵的第i行j列元素是S中元素x_i和x_j的最大公因子的a次幂(x_i,x_j)~a,则称该矩阵是定义在S上的a次幂最大公因子(GCD)矩阵,用(S~a)表示. 类似可定义a次幂LCM矩阵[S~a].作者证明了:设S由两个互素的因子链构成并且1∈S. 若a|b,则det(S~a)|det(S~b),det[S~a]|det[S~b]和det(S~a)|det[S~b].若S由两个不互素的因子链构成, 则如此分解定理不成立.  相似文献   

6.
设S={x_1,x_2,…,x_n}是由n个不同的正整数组成的集合,并且设a为正整数.如果一个n阶矩阵的第i行j列元素定义为(-1)~(i+j)(x_i,x_j)~a,其中(x_i,x_j)_a表示S中的元素x_i与x_j的最大公因子的a次幂,则称这个矩阵((-1)~(i+j)(x_i,x_j)~a)是定义在S上的a次幂最大公因子(GCD)交错矩阵,简记为(AS~a).类似可定义a次幂最小公倍数(LCM)交错矩阵((-1)~(i+j)[x_i,x_j]~a),简记为[AS~a].在本文中,设S由三个互素的因子链构成,且1∈S.作者证明了如下结果成立:(1)若a|b,则det(AS~a)| det(AS~b),det[AS~a]| det[AS~b],det(AS~a)| det[AS~b];(2)在n阶整数矩阵环M_n(Z)中,若a|b,则(AS~a)|(AS~b),[AS~a]|[AS~b],(AS~a)|[AS~b];若ab,则(AS~a)(AS~b),[AS~a][AS~b],(AS~a)[AS~b].  相似文献   

7.
设S={x_1,x_2,…,x_n)是由n个不同的正整数组成的集合,并设整数a≥1,如果n阶矩阵的第i行j列元素是S中元素x_i和x_j的最大公因子的a次幂(x_i,x_j)~a,则称该矩阵是定义在S上的口次幂GCD矩阵,用(S~a)表示.类似定义幂LCM矩阵[S~a].本文证明了:设S是由n个不同的正整数组成的一个最大公因子封闭集,且正整数a∣b.如果n≤3,那么det(S~a)I det[S~b];如果max{x_i)<12,那么det(S~a)f det[S~b].x_i∈S  相似文献   

8.
关于LCM方程的李-曹猜想的注记   总被引:1,自引:1,他引:0  
在研究Hong关于定义在gcd封闭集上的幂LCM矩阵[Se](e为正整数)的非奇异性的一个猜想时,李和曹研究了如下的不定方程(称为LCM方程):1lcmy1,y2,y3,y4-4i=11yi+1gcd(y1,y2)+1gcd(y1,y3)+1gcd(y2,y3)[SX)]=0.他们首先证明了当ω(y)<4时,方程无解,这里y=lcm[y1,y2,y3,y4],ω(y)表示y的不同素因子的个数;然后他们给出ω(y)=4且y=p21p22p23p2m4时,方程有2次幂整数解的必要条件,这里pi为不同素数,m≥1;根据这些必要条件他们接着验证了方程当y≤1 334 025时没有2次幂整数解;最后他们提出猜想:若n≤9,则定义在gcd封闭集S={x1,…,xn}上的平方LCM矩阵[S2]是非奇异的,即LCM方程没有2次幂整数解.本文作者推广了李-曹关于LCM方程有2次幂整数解的研究:首先给出了当ω(y)=4且y=p2m11p2m22p2m33p2m44时,方程有2次幂整数解的必要条件,并给出了当ω(y)≥4时,方程解的表达式(如果存在的话),这里pi为不同素数,mi≥1;然后根据这些必要条件在计算机上验证了方程当y≤260 620 460 100时没有2次幂整数解,进一步支持了李-曹猜想.  相似文献   

9.
设S={x1,x2,…,xn}是一个正整数的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素定义为1/(xi,xj)a,其中(xi,xj)a表示S中的元素xi与xj的最大公因数的a次幂,则称这个矩阵是定义在S上的倒数幂GCD矩阵,用(1/Sa)表示.类似可定义倒数幂LCM矩阵[1/Sa].作者得到了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵的行列式公式,并由此证明了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵均是非奇异的.  相似文献   

10.
设S={x1,…,xn}为n个不同正整数构成的集合,若对任意不超过n的正整数i,j,均有gcd(xi,xj)∈S,则称S是GCD封闭集.对于元素x,y∈S(yS(x)表示x在S中所有最大型因子构成的集合.设a和b是正整数,f是算术函数.以(fa(S))(对应地(fa[S]))表示一个n阶方阵,其第i行第j列元素为fa(gcd(xj,xj))(对应地fa(lcm(xj,xj))).令■表示有限集T的基数.在本文中,当a|b, S为GCD封闭集且maxx∈S{|GS(x)|}≤2时,我们建立了几个关于幂矩阵(fa(S))与(fb(S)...  相似文献   

11.
一个含有n个不同正整数的集合S={xt,…,xn}称为是gcd闭的,如果S中任两个整数的最大公因子也在S中,洪绍方在2002年猜想:对于给定的一个正整数t,存在一个仅由t决定的正整数k(t),使得当n≤k(t)时,定义在任意gcd闲集S={xt,…,xn}上的幂LCM矩阵([xi,xj]^t)是非奇异的;而当n≥k(t) 1,则存在一个gcd闭集S={xt,…,xn},使得定义在其上的幂LCM矩阵([xi,xj]^t)奇异,洪于1999年证明了k (1)=7,在本文中,作者证明了若t≥2,则有k(t)≥8.  相似文献   

12.
称n元正整数集合S={x1,…,xn}因子链,如果存在n元置换σ, 使得xσ(1)|…|xσ(n). 作者证明:若S由两个互素的因子链构成,那么在n阶整数矩阵环中,GCD矩阵(S)整除LCM矩阵[S].这部分证明了洪绍方的一个猜想.  相似文献   

13.
首先给出定义在三个拟互素因子链上的倒数幂GCD矩阵和倒数幂LCM矩阵的行列式的计算公式,由此证明定义在三个拟互素因子链S上且S的最大公因子属于S时的倒数幂GCD矩阵和倒数幂LCM矩阵是非奇异的.但当构成S的三个因子链不素时,如此的结果不成立.  相似文献   

14.
1989年以来,多位国内外学者讨论过定义在集上的GCD矩阵和LCM矩阵,获得了一批成果。本文是交他们的研究推广到所谓GCD幂矩阵和LCM幂矩阵上,得到了这两类矩阵在GCD闭集上的结构定理,行列式的计算公式,特别是得出LCM幂矩阵和GCD幂矩阵在GCD闭集上的逆矩阵的漂亮结果。  相似文献   

15.
设Bm×n是所有m×n布尔矩阵的集合,R(A)为A∈Bn的行空间,|R(A)|表示行空间R(A)的基数,m,n是正整数,k为非负整数.证明了如下3个结果:(1) 设A∈Bm×n,m,(ⅰ) 如果A是幂等矩阵,即A2=A,那么|R(Am)|=|R(A)| ;(ⅱ) 如果A是对合矩阵,即A2=I,那么当m是奇数时,|R(Am)|=|R(A)|,当m是偶数时|R(A)|=2n.(2) 设A∈Bm×n,A含1的元素个数为k,0≤k≤min{m,n},且A的每行每列元素中1的元素个数最多为1,那么|R(A)|=2k.(3) 若A∈Bm×n是形如A=(O OO A1)的分块矩阵,A1=(aij)k×k,aij=0(i>j),aij=1(i≤j),i,j=1,2,…,k,则|R(A)|=k+1.  相似文献   

16.
本文将定义在集S上的最大公因子(GCD)矩阵〔G(S)〕推广到S上的最小公倍(LCM)矩阵〔L(S)〕。我们给出了矩阵〔L(S)〕的结构定理以及行列式det〔L(S)〕的计算公式。当S为因子闭集时,我们给出了行列式det〔L(S)〕的一个简洁优美的公式。  相似文献   

17.
设S={x1,x2,…,xn}是由n个不同正整数的集合.以S中的任意两个元xi,xj,i=1,2,…,n,j=1,2,…,n的最小公倍数为i行j列元素的矩阵称为S上的最小公倍数矩阵(LCM矩阵),记为[S].S称为最大公因子封闭集(GCD closed),如果对于S中任意两个元xi,xj,它们的最大公因子(xi,xj)∈S.1992年,Bourque和Ligh猜想(以下简称BL猜想)GCD封闭集S上的LCM矩阵是非奇异的.1999年,Hong证明了该猜想对n≤7成立,但n≥8时不真,即对任意n≥8,存在G  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号