首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶技术将Keggin型H3PW12O40负载在SiO2上,并用H2O2溶液对其进行敏化,制得H3PW12O40/SiO2/H2O2光催化剂.考察在模拟自然光条件下,甲基紫的初始浓度、溶液pH以及催化剂用量对甲基紫可见光催化降解率的影响.实验发现,在甲基紫初始浓度为30mg/L,溶液pH为2.5,催化剂的用量为0.6g/L的优化情况下,光降解2.5h,甲基紫的降解率达到92%.  相似文献   

2.
以海藻酸钠水凝胶为骨架, 结合壳聚糖和磁性Fe3O4, 开发出一种新型的磁性壳聚糖/海藻酸钠复合凝胶球(MCSB)制备方法, 并通过正交试验和单因素实验, 探究不同制备条件对复合凝胶球制备效果的影响, 确定最优制备条件: CaCl2浓度为2.5 g/L, 海藻酸钠浓度为24 g/L, 壳聚糖添加量为5 g/L, 磁流体添加量为4.64 g/L。制备出的凝胶球表面光滑, 大小均匀, 纯黑色, 呈球形, 直径在2 mm左右, 具有顺磁性。通过傅里叶变换红外光谱(FTIR)、同步热分析(TGA)等手段对凝胶球进行表征。结果表明, MCSB的热稳定性良好, 凝胶球表面的活性基团主要有羟基、氨基、羧基等。吸附性能实验表明, 当MCSB用量为20 mg时, 对40 mL 25 mg/LCu2+溶液的吸附去除率为78.13%, 表明磁性壳聚糖/海藻酸钠复合凝胶球是一种制备简单、效果良好的新型复合吸附剂。  相似文献   

3.
明胶包埋壳聚糖/海藻酸钠茶多酚的缓释性能   总被引:3,自引:0,他引:3  
以海藻酸钠和壳聚糖为壁材制备了茶多酚微胶囊,确定了最佳制备工艺条件为壳聚糖质量分数1.0%、海藻酸钠质量分数2.0%~3.0%、氯化钙质量分数5.0%,所制得的茶多酚微胶囊的包埋率最大,用明胶包埋茶多酚微胶囊,制备了茶多酚缓释复合体系,结果表明,用明胶包埋后的微胶囊可使茶多酚的缓释性能及稳定性有较大的提高。  相似文献   

4.
【目的】以壳聚糖(CS)为壁材,杀菌农药戊唑醇(TBA)为芯材,采用乳化喷雾干燥法制备出载戊唑醇/壳聚糖(TBA/CS)微胶囊制剂。【方法】通过扫描电子显微镜探讨了乳液组成(水油比)和喷雾干燥条件对TBA/CS微胶囊结构和形貌的影响,并通过模拟释放实验研究了TBA/CS微胶囊的缓释性能。【结果】当CS溶液质量分数为1.2%,表面活性剂质量分数为1.1%,喷雾气体压力为4 bar(400 kPa),进料速度10.5 m3/h时,制得的TBA/CS微胶囊有规整的球形结构,且具有良好的缓释性能,对白色念珠菌具有明显的抑菌效果。【结论】乳化喷雾干燥法制备载戊唑醇/壳聚糖(TBA/CS)微胶囊的方法简单,CS溶液浓度、表面活性剂浓度、喷雾气体压力、进料速度等实验条件对制备的TBA/CS微胶囊形貌有较大的影响。  相似文献   

5.
以克拉霉素为模型药物,乙基纤维素与羟丙基甲基纤维素为膜材料,采用溶剂挥发法制备混合膜微胶囊,探索制备的最佳条件,并考察混合膜微胶囊的缓控释性能.实验结果表明,混合膜克拉霉素微胶囊的最佳制备条件为∶分散相中膜材料浓度为3%、乙基纤维素/羟丙基甲基纤维素为6∶1~7∶1、投药量2∶1~3∶1、连续相中SDS浓度0.1%、PVA浓度1.0%、油水比1∶8.  相似文献   

6.
为了制备粒径均一可控的磁性壳聚糖微球,以SPG膜乳化技术并结合原位法制备磁性壳聚糖微球,分别考察了乳化阶段中膜乳化压力、乳化剂用量、分散相配比、搅拌速率、固化阶段中交联剂含量、溶液的p H条件以及壳聚糖与Fe Cl2·4H2O配比等因素对微球制备的影响。结果表明,在乙酸含量为3%、乳化剂Span-80含量为4 m L、乳化压力为200 k Pa、转速400 r/min、戊二醛含量为2 m L、溶液p H值为7.5以及壳聚糖与Fe Cl2·4H2O质量比为1∶1的条件下,可得到平均粒径为6.78μm,磁饱和强度为25.69 emu/g的均匀磁性壳聚糖微球,制备方法操作简单、条件温和,所制得的微球粒径均一可控。  相似文献   

7.
 通过复凝聚法将β-聚苹果酸(PMA)与壳聚糖(CS)作为壁材,制得粒径为200~600nm,分散系数<0.30的具有长久缓释效果的香精微胶囊.通过Plackett-Burman(PB)实验和Box-Benhnken Design(BBD)优化确定了制备缓释型香精微胶囊的最佳工艺条件,得出制备香精微胶囊的最优条件为:壳聚糖浓度1.5g/L,乳化时间45min、转速600r/min、反应时间60min,聚苹果酸浓度为1.0g/L,聚苹果酸(mL)﹕壳聚糖(mL)=1:2,pH值为6.0,滴加速度为7.5mL/h,芯材添加量为1mL/15mL壁材.借助扫描电镜观察与壁材形成的微球形微胶囊,粒径为480.1nm,包埋率为28.57%,缓释效果持续长久.  相似文献   

8.
以Fe2O3为活性组分,γ-Al2O3为载体,采用浸渍法制备了Fe2O3/Al2O3催化剂,并将其用于催化降解模拟聚丙烯酰胺(PAM)废水.考察了催化剂制备条件对催化活性的影响,得出最佳制备工艺条件为:以Fe(NO3)3水溶液为浸渍液、活性组分负载量20%、焙烧时间3 h、焙烧温度500℃.在温度为60℃、pH=7.0、催化剂加入量为2 g/L,H2O2的质量浓度为0.6 g/L的条件下对质量浓度为400 mg/L聚丙烯酰胺废水进行降解,反应90 min后废水中聚丙烯酰胺相对分子质量降解率最高可达90%以上,CODCr去除率达86%,显示出了较高的催化活性.Fe2O3/Al2O3催化剂经过多次重复使用,催化活性基本没有降低,使用寿命长.  相似文献   

9.
以八面体Cu2O颗粒为载体,运用电化学沉积法,制备了具有微/纳结构的Cu2O/壳聚糖复合光催化剂.结果表明,在Cu2O颗粒的{111}表面可以沉积壳聚糖颗粒,得到八面体Cu2O/壳聚糖复合光催化剂.复合光催化剂光催化降解甲基橙的能力优于单独的Cu2O颗粒.初步分析了八面体Cu2O/壳聚糖复合光催化剂降解甲基橙的机理.  相似文献   

10.
采用微波辅助加热法,在表面活性剂PVP-NVP作用下,通过自组装制备了Cu2O微球;通过XRD、SEM、TEM对样品进行了表征;以甲基橙(MO)为模拟污染物,研究了在Cu2O作用下影响甲基橙光催化降解的各种因素, 寻找出了最佳反应条件.结果表明,Cu2O颗粒在模拟太阳光光源辐照条件下,对MO的光降解有较好的催化活性;但加入适量的H2O2可以显著提高Cu2O对MO的光降解.当Cu2O用量为1 g/L,H2O2用量为0.15%(体积比)时,光催化效果达到最佳.  相似文献   

11.
海藻酸钠/壳聚糖微胶囊生物相容性的研究   总被引:5,自引:1,他引:5  
以天然高分子材料海藻酸钠(alginate)和壳聚糖(chitosan)为原料制备海藻酸钠/壳聚糖(al-ginate-chitosan-alginate,ACA)微胶囊,用于动物和微生物细胞的微囊化培养与移植.考察了壳聚糖材料对细胞生长的影响.采用活体实验方法,将制备的ACA微胶囊移植入小鼠腹腔,8个月后微胶囊能够成功回收,且囊内细胞出现聚集现象,小鼠腹腔无炎症等免疫排斥现象发生,初步证明了ACA微胶囊具有良好的生物相容性.  相似文献   

12.
采用ZnCl2·4H2O溶液作为纤维素和壳聚糖的共同溶剂,制备纤维素/壳聚糖/ZnCl2·4H2O溶液,研究温度、原料组分和剪切频率等对纤维素/壳聚糖/ZnCl2·4H2O溶液流变性能的影响.研究结果表明:溶液中大分子链间缠结点在高温下更易打开,流动阻力下降;CS/BC分数增加时缠结作用强,流动阻力升高.故溶液的表观黏度、结构黏度指数、零切黏度、储能模量和损耗模量随着温度的升高而减小,随着壳聚糖/纤维素(CS/BC)分数的增加而增大;剪切频率增加,溶液的表观黏度减小,储能模量和损耗模量增大.  相似文献   

13.
合成Fe2O3纳米粒子复合纤维素膜.采用XRD、TEM和磁力线等多种方法对Fe2O3纳米粒子复合纤维素膜的结构和性能进行表征,并研究Fe2O3纳米粒子复合纤维素膜对亚甲基蓝的降解作用.结果表明:当溶液中H2SO4加量为25.8mol/L、H2O2加量为2.4mol/L时,用5g/L的复合纤维素膜对1.4×10-5 mol/L的亚甲基蓝溶液进行降解,25min内降解率达到100%.  相似文献   

14.
通过正交试验对壳聚糖-植物精油微胶囊的制作工艺进行了优化,并观察了丁香精油微胶囊处理樱桃番茄和葡萄在储藏期间品质的变化规律.试验结果表明,通过正交试验法研究精油浓度、Tween-80浓度、醋酸壳聚糖质量比等因素对微胶囊粒径的影响,确定粒径较小的微胶囊工艺条件为:精油浓度0.10%,Tween-80浓度0.10%,醋酸壳聚糖质量比为1.5.体内试验结果显示,125μL/L微胶囊溶液对樱桃番茄自然腐烂的抑制效果最好,7d后仅为7.3%;250μL/L微胶囊溶液对葡萄自然腐烂的抑制效果最好,7d后仅为12.9%.丁香植物精油微胶囊在储藏期间对樱桃番茄和葡萄的感官及其品质指标影响较小.  相似文献   

15.
用海藻酸钠/壳聚糖/活性炭制备的微胶囊具有生物半透膜特性和很好的强度;以海藻酸钠/壳聚糖/活性炭微胶囊包裹一株从活性污泥中筛选的对氯苯酚优势降解菌;根据废水处理的要求和流体动力学原理设计了气升式内循环生物流化床的中试设备;实验表明,以制备的微胶囊作为气升式内循环生物微胶囊流化床中载体处理对氯苯酚废水处理最适宜条件:pH=7.0,温度为30-35℃,处理120mg/L的对氯苯酚废水时,微胶囊最佳载体投入量为15%,通气量为120L/h。  相似文献   

16.
制备海藻酸钠-壳聚糖生物微胶囊的技术研究   总被引:12,自引:0,他引:12  
以海藻酸钠和壳聚糖为原料,研究了采用界面络合方法制备藻酸钠一壳聚糖生物微胶囊的技术条件和影响因素。结果表明,在胶珠反应温度为30℃、反应时间为20min、海藻酸钠浓度为2.0%、氯化钙浓度为4.0%、壳聚糖溶液的浓度1.8%、海藻酸钙胶珠与壳聚糖溶液的比例为1:5、成膜反应时间10min、覆膜时间8min为最佳的微胶囊制备条件。  相似文献   

17.
采用马铃薯蛋白(PP)、山茶籽油(CO)以及壳聚糖(CS)为主要原料,运用复合凝聚法通过乳化、冷冻干燥等制备出性质稳定的壳聚糖/马铃薯蛋白/山茶籽油微胶囊,通过考察微胶囊制备过程中乳液形成和复凝聚效果获得最佳制备条件.结果表明,壳聚糖/马铃薯蛋白/山茶籽油微胶囊的最佳制备条件如下:匀浆转速为8000 r/min,乳化时间为20 min,山茶籽油/马铃薯蛋白质量比为1:2,壁材的复合凝聚比(PP/CS)为2:1,温度为45℃.通过结构与性质表征发现,马铃薯蛋白基微胶囊壁材成功包裹芯材山茶籽油,在马铃薯蛋白及功能性油脂的高值化利用中具有广阔的应用前景.  相似文献   

18.
利用壳聚糖/海藻酸钠复合凝胶,同时负载阿司匹林和普罗布考两种性质差异显著的药物,探索实现阿司匹林/普罗布考复合药物协同包埋的最佳条件.结果显示,当阿司匹林与普罗布考的质量浓度比为2∶1、海藻酸钠与壳聚糖的质量浓度比为1∶2时,协同负载普罗布考和阿司匹林的效果最佳,其包封率分别为96.33%和98.35%;并且表面电位为-13.94mV,储存稳定性较好.  相似文献   

19.
在太阳光下采用Cu2O光催化剂处理不同质量浓度的甲基橙废水.实验结果表明,Cu2O光催化可以高效降解甲基橙.在反应6 h后,COD质量浓度为392.05 mg/L的甲基橙废水COD降至17mg/L以下,去除率高达95.7%;随着质量浓度的升高,COD去除率略有下降,当COD质量浓度为1264.2 mg/L时,COD去除率降至87%.Cu2O降解甲基橙的最佳投加量为0.6 g Cu2O/g甲基橙.  相似文献   

20.
采用循环伏安法研究了醋酸纤维素、丙基甲基纤维素(HPMC)、壳聚糖3种粘结剂对石墨电极性能的影响.结果表明,壳聚糖为粘结剂制备的石墨电极的性能最好,该电极在1mmol/L亚铁氰化钾溶液和1mmol/L的对苯二酚溶液中的氧化还原峰的对称性和可逆性均较好,其氧化峰电流与扫描速度υ1/2成线性关系,表明电极表面的氧化还原过程受扩散过程控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号