首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
石墨化在金刚石多晶高压烧结中的作用   总被引:8,自引:0,他引:8  
用镍钛合金作助烧结剂,在7.7G P_(?)压力和1300—1700℃温度下进行了金刚石的多晶烧结.对所得烧结体作了显微组织观察、相结构和相成分分析、致密度测量以及耐磨性和抗压强度的测试.结果表明,金刚石的石墨化是烧结过程的中心环节,它对金刚石晶粒间通过合金结合剂的粘结以及金刚石晶粒间直接键合具有重要的意义.  相似文献   

2.
Si—Ti—B掺杂金刚石/硬质合金复合体的性能   总被引:2,自引:0,他引:2  
金刚石粒度和掺杂量两因素对Si-Ti-B掺杂金刚石/硬质合金复合体的金刚石层的抗弯强度和耐磨性的综合影响,可以归结为平均自由程与机械性能的关系。在强度(或耐磨性)与平均自由程的关系曲线中,存在最大值。对于低掺杂量材料,强度随平均自由程(粘结相层厚度)的减少而降低。对于高掺杂量材料,强度随粘结相层厚度的增大而下降。Si-Ti-B掺杂烧结金刚石的耐热性高于钴粘结金刚石。  相似文献   

3.
人工合成金刚石技术比较   总被引:5,自引:0,他引:5  
静压法是当前工业合成金刚石的主要的合成手段,合成工业用金刚石主要采用静压法中的静压触媒法,合成宝石级金刚石主要采用静压晶种触媒法生产,通过静压法中的直接变换法,纯净的多晶石墨棒可以在短时间内转化为多晶金刚石,二十世纪八十年代还出现了一种在低压下生长金刚石的新方法——化学气相沉积法(CVD),目前只能用于制备金刚石薄膜,本文通过总结比较各种金刚石合成技术,提出了利用激光控制金刚石生长的设想,使用这种方法将提高金刚石的质量,  相似文献   

4.
用多晶X射线粉末衍射技术和物理、化学分析方法,对多晶α-氧化铝亚微米级粉末材料的易烧结性能进行了测量和分析.探讨α-氧化铝粉末材料的易烧结性能与α-氧化铝的纯度、粒径、粒度分布和粒子形状的关系,并分析了易烧结α-氧化铝陶瓷制品的成形及烧结工艺条件对材料易烧结性能的影响.  相似文献   

5.
对等离子增强化学气相淀积多晶金刚石薄膜在N离子注入前后的场发射特性进行研究。研究发现,同一工艺条件下的淀积的多晶金刚石薄膜样口的发展射特性在离子注入前有较大的差异,离子注入后金刚石石薄膜场发射特性的差异基本上得到消除,而且在高场下发射电流密有一定程度的提高,场发射特性得到较大改善。  相似文献   

6.
采用放电等离子烧结方法制备Cu40Ni30Fe20Sn5Ti5多主元合金/金刚石复合材料,通过热力学计算和实验研究黏结相和金刚石的界面反应,分析界面反应对复合材料力学性能及磨损性能的影响。研究结果表明:烧结过程中,多主元合金黏结相中的Ti元素与金刚石在界面处发生了化学反应,生成TiC,且TiC层的厚度随着烧结温度和压力的升高而增加。在950℃烧结的复合材料中,TiC层较厚且致密,黏结相与金刚石界面结合良好,材料的硬度和横向断裂强度最高,此外,金刚石出露良好,能发挥较好的磨损作用,耐磨损性能也最好。当烧结温度高于950℃时,金刚石受到热损伤导致石墨化程度增加,多主元合金黏结相和金刚石的界面结合强度减弱,复合材料的横向断裂强度和磨损性能均降低。因此,适当的界面反应可提升金刚石复合材料的服役性能。  相似文献   

7.
本文测量了合成金刚石用的几种多晶石墨材料的微晶尺寸和石墨化程度。结果表明:样品的石墨化程度与微晶尺寸没有直接关系。用透射电镜观测到了人造多晶石墨材料中类金刚石结构的微晶的存在。静压法合成金刚石的结果表明:除去工艺方面的原因外,人工合成金刚石的晶粒大小与石墨材料中微晶的尺寸有关。  相似文献   

8.
用微波等离子体化学气相淀积方法,以C60薄膜作为在硅衬底上的过渡层,无衬底负偏压。采用通常淀积金刚石薄膜的生长条件,在C60薄膜上生长出多晶金刚石薄膜。  相似文献   

9.
通过实验研究,提出空气状态下采用等离子熔射金属焊接金刚石的新方法.将等离子体熔化的钛金属熔滴,喷射至经王水浸蚀的,采用热压烧结方法制备的金刚石节块表面,然后制备自然断口以观其微观状态.通过SEM照片,研究断口中金刚石经过热压烧结与熔射沉积后的金属与金刚石界面微观状态;分析比较被熔射金属包镶的金刚石与被热压烧结的金属粉末包镶的金刚石,以及与其包镶体之间的结合强度的差异.最后,对金属与金刚石之间的界面形成机制进行初步的探讨.  相似文献   

10.
FRP与烧结普通砖粘结性能的试验   总被引:1,自引:0,他引:1  
通过63块烧结普通砖与碳纤维布(CFRP)、玻璃纤维布(GFRP)的单面剪切试验,分析纤维增强复合材料(FRP)与烧结普通砖粘结破坏的全过程及破坏特征.研究普通烧结砖的抗压强度、FRP种类、FRP粘结长度、粘结树脂、FRP粘贴层数等对极限粘结荷载的影响.结果表明,极限粘结荷载与FRP粘结长度有关,当粘结长度超过一定长度后,极限粘强度增加缓慢或不再增加.烧结普通砖强度对极限粘结荷载有一定影响,极限粘结荷载随着烧结普通砖抗压强度的增大而增大;当砖的抗压强度超过27 MPa时,极限粘结荷载增大幅度变小.粘结树脂的种类对极限粘结荷载有一定的影响,特别是底层树脂对极限粘结荷载有一定的提高作用.从试验结果来看,采用"小西"树脂试件的极限粘结荷载大于采用"Lica"树脂试件的极限粘结荷载.FRP的种类影响着极限粘结荷载,CFRP与烧结普通砖的极限粘结荷载高于GFRP与烧结普通砖的极限粘结荷载.  相似文献   

11.
通过放电等离子体烧结(SPS),分别以纳米多晶粉体和非晶粉体作为原料制备了Al2O3-ZrO2纳米陶瓷复合材料,并研究了初始粉体状态对致密化过程和微观结构的影响。将纳米多晶粉体通过SPS烧结为致密的纳米块体,所需的最低烧结温度为1 400℃,所得产品的晶粒尺寸约为320nm;非晶粉体完全致密所需的SPS温度为1 200℃,所得产品的晶粒尺寸约为150nm。相比于纳米多晶粉体,非晶粉体可以在较低的温度下烧结成为致密纳米块体,我们将这一现象归结为非晶粉体在烧结中的相转变。这一发现为纳米陶瓷块体的低温烧结提供了新的思路。  相似文献   

12.
主要论述金刚石薄膜场致发射材料的性能,包括了多晶金刚石薄膜、类金刚石薄膜(DLC)、纳米结构金刚石薄膜、用酸处理后的金刚石薄膜等的性能,给出了几种典型的金刚石薄膜场致发射阴极结构。  相似文献   

13.
本文分析和综述了影响金刚石涂层与硬质合金基体粘结性的主要因素。按照其原理来分,预处理方法可分为物理预处理法、化学预处理法以及中间层法。通过适当的预处理能有效消除或抑制基体中钴粘结相的负面影响,提高金刚石涂层与硬质合金基体间的粘结强度。  相似文献   

14.
利用热丝大面积金刚石薄膜气相合成(CVD)装备制备了复合金刚石薄膜,并对其表面和断面分别进行了扫描电镜(SEM),原子力显微镜(AFM)和Raman光谱表征,研究了该复合结构的介电性能,利用共振电路测量了高频下薄膜的介质损耗与频率的关系,结果表明,复合结构由普通多晶金刚石薄膜和纳米金刚石薄膜组成,薄膜的表层结构体现了纳 米金刚石的特征,复合金刚石薄膜不仅具有表面光滑的优点,介电性能也接近于常规的多晶金刚石薄膜,是一种较好的电子材料,可应用于金刚石薄膜半导体器件的制备。  相似文献   

15.
根据热压烧结理论,通过实验,系统分析研究了一定工艺条件下,金刚石受温度影响强度损失的情况,得出烧结温度对金刚石强度的影响大于焊接温度对金刚石强度的影响,为工具制造中合理选用金刚石的强度提供参考。  相似文献   

16.
为探索新型热沉用散热材料,采用高温高压方法烧结制备了金刚石/硅复合材料,并研究了金刚石大小粒度混粉、金刚石含量、渗硅工艺以及金刚石表面镀钛对复合材料的致密度和导热性能的影响.结果表明:在大粒度金刚石粉中掺入小粒度金刚石粉、渗硅和金刚石表面镀钛处理都可提高金刚石/硅复合材料的致密度和热导率;随着金刚石含量增大,复合材料热导率提高;其中75/63μm镀钛金刚石颗粒与40/7μm金刚石颗粒的混粉,当混粉质量分数为95%时,在4~5GPa、1400℃高温高压渗硅烧结,金刚石/硅复合材料的热导率可高达468.3W·m-1·K-1.  相似文献   

17.
基于密度泛函理论对铜上外延生长的金刚石薄膜的几何结构及其能量特征进行了计算,计算结果表明外延生长金刚石薄膜的几何参数与体金刚石的几何参数相似(特别是(111)面);在铜多晶基体的<111>方向更有利于金刚石薄膜的外延生长.  相似文献   

18.
多晶金刚石膜的光学性质与工艺参数密切相关.采用一较为完备的金刚石透过率模型,研究了一系列金刚石膜在中远红外区的光学性质.并得出了不同衬底预处理方法和反应室中甲烷分压对CVD膜的平均透过率、表面粗糙度、非金刚石相含量、各种成分的吸收系数等光学性质的影响,计算结果与实测结果一致.  相似文献   

19.
熔渗法合成金属结合剂金刚石烧结体的研究   总被引:1,自引:0,他引:1  
本文采用熔渗法和事法进行了合成金属结合剂金刚石烧结体的对比实验;对实验结果进行了讨论;研究了金刚石的粒度对烧结体磨耗比的影响;探讨了两种方法的使用范围。  相似文献   

20.
1967年Dyment等人利用Ⅱα型天然金刚石制备出了用于GaAs半导体激光二极管散热用的金刚石热沉,并用该热沉首次实现了这一激光二极管的室温连续工作。但是由于受到制备成本的限制,利用天然及高压合成金刚石制备的热沉一直没有得到推广应用。 本文用灯丝热解CVD方法,合成了厚度为100μm的金刚石多晶薄膜,通过真空蒸发  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号