首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用近红外光谱(NIR)结合偏最小二乘法(PLS)建立一种实时监测蛹虫草发酵中胞内多糖质量浓度的新方法.对39个批次的蛹虫草在3个不同条件的5L发酵罐中进行蛹虫草深层发酵,发酵过程中间隔一定时间取样,采集样品的近红外光谱,并按常规方法测定样品中胞内多糖质量浓度,再采用PLS法建立样品的近红外光谱与胞内多糖质量浓度间的模型,所建模型经过选择最适光谱预处理方法和最适隐变量数进行优化,其留一交互验证预测值与化学测定参考值间的相关系数R=0.8750,交互验证均方根误差RMSECV=0.3052.采用最优PLS模型对样品中胞内多糖质量浓度进行预测,校正集预测均方根误差RMSEC=0.1670,预测集预测均方根误差RMSEP=0.3650,表明模型的稳健性和预测性能较好。  相似文献   

2.
张卫民  何文  吴拥军 《河南科学》2012,30(9):1220-1222
采用近红外漫反射光谱分析技术和偏最小二乘法对福多斯坦药物的有效成分进行定量分析测定,采集48个不同比例的福多斯坦样品近红外漫反射光谱,用一阶导数的光谱预处理方法,结合偏最小二乘法建立福多斯坦的定量分析模型.结果显示:交互验证均方根误差为0.003 57,相关系数R为0.994 77,预测均方根误差为0.003 89,平均回收率为99.63%(n=8),结果表明,用近红外光谱分析技术联合偏最小二乘法对福多斯坦进行定量分析结果准确可靠,方法简便快速.  相似文献   

3.
基于短波近红外(SW-NIR)漫反射光谱,提出一种非破坏定量预测盐酸氟桂利嗪粉末药品质量比的新方法.以高效液相色谱法(HPLC)分析值为参考值,将遗传算法(GA)和神经网络相结合,建立盐酸氟桂利嗪粉末药品的光谱特性与质量比间的定量分析模型.应用GA自动构建神经网络拓扑结构,选择最优的网络参数和光谱波段;讨论不同光谱预处理方法对神经网络预报能力的影响,并对测试集样品质量比进行预测.结果表明,一阶导数数据预处理方法为最优预处理建模方法,其测试集的均方根误差RMSE=0.198 7%,相关系数R=0.986 3.  相似文献   

4.
偏最小二乘法-可见/近红外光谱测定南丰蜜桔糖度的研究   总被引:1,自引:0,他引:1  
研究了南丰蜜桔糖度的快速测定方法,选择漫反射原始光谱采用偏最小二乘法(PLS)建立了南丰蜜桔糖度的校正模型,并对模型的预测性能进行了验证.在糖度预测模型中,预测集的相关系数为0.9133,预测均方根误差为0.5577,平均预测偏差为-0.0656.结果表明:可见/近红外漫反射光谱结合PLS方法对南丰蜜桔糖度的快速测定是有效的.  相似文献   

5.
利用近红外光谱技术结合偏最小二乘法(PLS)对桃汁样本中原汁的含量进行定量分析. 采用5种不同预处理方法优化检测数据,结果表明标准化预处理所建立的定量检测模型性能最优,其预测相关系数(R2p)、预测均方根误差(RMSEP)、校正相关系数(R2c)、校正均方根误差(RMSEC)分别为0.9988、0.0140、0.9973、0.0212. 研究为桃汁等果汁饮品中原汁含量的检测提供一种快速、无损、简便、廉价、准确的方法.  相似文献   

6.
以清香型铁观音茶叶为试验原料,基于近红外光谱技术结合遗传算法,建立相关的数学分析模型,用于安溪铁观音综合品质得分的测定,完善茶叶检测体系,进一步推动我国茶产业的标准化进程。实验结果表明,经二阶导数+平滑+归一化方法对光谱进行预处理后,得到综合品质得分PLS测定模型最优,验证集相关系数为0.913,均方根偏差为0.665。选用近红外光谱6 670-4 000 cm-1谱区,经遗传算法筛选特征波长后,建立茶样综合品质得分GA-PLS测定模型,校正集相关系数为0.959,均方根偏差为0.413;验证集相关系数为0.940,均方根偏差为0.587,GA-PLS模型的预测能力和精度更高。  相似文献   

7.
基于降噪处理的蒙古栎木材气干密度NIRS定标模型   总被引:1,自引:0,他引:1  
分别采用卷积平滑法、小波变换法对蒙古栎木材近红外光谱(NIRS)做去噪处理,并讨论两者混合去噪时,处理顺序变化对光谱去噪效果的影响,最后应用偏最小二乘法(partial least squares regression,PLS)和主成分回归法建立蒙古栎木材气干密度近红外定标模型。结果表明,当平滑点数为3,db5小波分解层数为2时,以平滑+小波方式去噪效果最好,其信噪比(SNR)为18.546,均方根误差为0.04。平滑+小波去噪后,基于PLS的蒙古栎木材密度近红外校正模型决定系数由0.767提高到0.902,校正均方根误差降低了35.32%,预测集决定系数为0.860,内部交叉验证和预测均方根误差分别达到最低,剩余预测偏差为2.67。因此,近红外光谱技术可实现蒙古栎木材气干密度快速预测,合理选择处理参数和建模方法可以有效提高模型精度。  相似文献   

8.
对86个土壤样品高光谱数据进行平滑去噪、一阶微分变换以及多元散射校正处理,在此基础上,建立土壤有机碳含量的偏最小二乘法(PLS)反演模型.结果表明,获得的五种PLS模型均具有较高的模型精度.其中,主成份个数为10时,R+MSC的PLS模型效果最好.校正模型的决定系数R2=0.95,校正均方根误差RMSEC=0.95.验证模型的决定系数R2=0.78,预测均方根误差RMSEP=2.03.利用PLS模型对预测集进行预测,实测值与预测值的决定系数R2=0.83,预测均方根误差RMSEP=1.71,预测标准差SEP=1.73.PLS模型可以对土壤有机碳含量进行预测.  相似文献   

9.
本研究以32个杏仁糖样品为研究对象,使用4种不同近红外光谱仪采集样品的光谱数据,利用二阶导数光谱法处理数据,并结合Savizky-Golay平滑方法,计算二阶导数光谱。将数据集预处理后,建立偏最小二乘(PLS)和支持向量机(SVM)模型用于预测未知样品的糖含量,通过对两个模型的应用发现,PLS模型预测值与真实值偏差较大,均方根误差为2.9822,而SVM模型中利用10折交叉验证优化参数,优化参数后预测值几乎全部与真实值相同,预测值与真实值间均方根误差为0.0127,误差极小。综上所述, SVM模型均方根误差较小,所以选择SVM模型作为糖的预测模型,为杏仁糖样品中糖含量的快速检测提供一种精确简单的方法,此模型可推广至食品中糖含量的定量分析。  相似文献   

10.
利用近红外和拉曼光谱法定量分析了甲醇汽油中甲醇的含量,采用偏最小二乘法(partial least squares,PLS)建立甲醇的定量模型.近红外光谱法测定甲醇定量模型的预测集相关系数RP为0.998,预测均方根误差(RMSEP)为0.289%;拉曼光谱法测定甲醇定量模型的预测集相关系数RP为0.982,预测均方根误差(RMSEP)为1.141%.实验表明,近红外与拉曼光谱技术均可用于甲醇汽油中甲醇含量的快速检测.  相似文献   

11.
以青金桔原粉为研究对象,采集不同时间热处理的青金桔果粉近红外光谱(900~1700nm)信息,经不同预处理,运用偏最小二乘回归(partial least square regression,PLS)法建立β-胡萝卜素含量的预测模型,实现靑金桔果粉中β-胡萝卜素含量的快速无损检测。试验结果显示,经标准正态变换(standard normal variate,SNV)预处理在1300~1700 nm范围内光谱信息构建的PLS模型,预测效果较好,模型均方根误差(RMSEC)、交叉验证均方根误差(RMSECV)、预测均方根误差(RM-SEP)分别为0.08、0.14和0.05,校正集决定系数(R2c)、交叉验证集决定系数(R2cv)和预测集决定系数(R2p)分别为0.95、0.87和0.95。由此表明,利用近红外光谱技术可潜在实现对青金桔果粉中β-桔胡萝卜素含量的快速检测。  相似文献   

12.
近红外光谱-偏最小二乘法无损定量分析异烟肼片   总被引:4,自引:0,他引:4  
应用近红外漫反射光谱结合偏最小二乘法, 对异烟肼片中异烟肼的含量进行分析, 建立了近红外光谱数学校正定量分析模型, 其对校正集样品的交互验证均方根误差(RMSECV)为0.00632. 对预测集样品的预测均方根误差(RMSEP)为0.00603; 回归系数为0.99456;加样平均回收率为99.772%. 重现性实验相对标准偏差(RSD)为0.526%. 结果表明, 该方法预测精度高, 且具有方便快捷、 非破坏、 无污染、 可在线检测和重现性好等优点.  相似文献   

13.
花青素是花茶中的主要质量指标,为了快速准确的检测花茶中花青素的含量,提出一种基于蚁群算法(ACO)结合区间偏最小二乘法(iPLS)的近红外光谱检测方法.原始近红外光谱经过预处理采用ACO-iPLS优选花青素含量对应的特征子区间.当全光谱划分为12个子区间时,ACO-iPLS优选出第1,9,10共3个子区间,在此基础上建立的近红外光谱模型最佳.模型对校正集和预测集相关系数分别为0.901 3和0.864 2;交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.160 0 mg·g-1和0.202 0 mg·g-1.研究结果表明:与常规的iPLS相比,ACO-iPLS不但可以有效选择近红外光谱特征谱区,而且建立的模型具有更高的精度和鲁棒性.  相似文献   

14.
应用近红外漫反射光谱结合偏最小二乘法(NIR PLS)对异福片中利福平和异烟肼的含量进行定量分析, 所建立的定量分析模型对校正集样品中利福平和异烟肼的含量预测回归系数分别为0.992 77,0.989 01,交互验证均方根误差(RMSECV)分别 为0.006 65,0.004 23.对预测集样品利福平、 异烟肼的含量预测均方根误差(RMSEP)分别为0.005 73,0.003 79;加样平均回收率分别为99.376%和98.243%;重现性实验相对标准偏差(RSD)分别为0.679 3%和0.639 8%.结果表明, 该方法预测精度高, 且具有方便快捷、 非破坏、 无污染、 可在线检测、 重现性好等优点, 可作为异福片原位质量检测和在线质量监控的方法予 以推广.  相似文献   

15.
以L-异亮氨酸发酵过程的发酵液为样品, 用偏最小二乘法考察2种光谱采集方式、 7种光谱预处理方法及不同光谱波段选择对建立5种氨基酸光谱预测模型精度的影响. 通过建立L-异亮氨酸发酵过程中主副产物最佳光谱预测模型, 确定最佳光谱信息采集方式、 光谱预处理方法、 光谱波长范围及模型因子数. 结果表明: 反射扫描优于透射扫描获取光谱所建最佳预测模型; 反射光谱采集L- 异亮氨酸、 L-丙氨酸、 L-谷氨酸、 L-亮氨酸和L-苏氨酸5种氨基酸最佳校正模型相关系数均大于0.96, 其交互验证均方差分别为1.760,0.462,0.430,0.259,0.199, 相对分析误差分别为7.8,6.8,6.3,5.0,6.4, 表明所提出的近红外光谱分析法快速检测氨基酸发酵液中各成分稳定可行.  相似文献   

16.
以L-异亮氨酸发酵过程的发酵液为样品, 用偏最小二乘法考察2种光谱采集方式、 7种光谱预处理方法及不同光谱波段选择对建立5种氨基酸光谱预测模型精度的影响. 通过建立L-异亮氨酸发酵过程中主副产物最佳光谱预测模型, 确定最佳光谱信息采集方式、 光谱预处理方法、 光谱波长范围及模型因子数. 结果表明: 反射扫描优于透射扫描获取光谱所建最佳预测模型; 反射光谱采集L- 异亮氨酸、 L-丙氨酸、 L-谷氨酸、 L-亮氨酸和L-苏氨酸5种氨基酸最佳校正模型相关系数均大于0.96, 其交互验证均方差分别为1.760,0.462,0.430,0.259,0.199, 相对分析误差分别为7.8,6.8,6.3,5.0,6.4, 表明所提出的近红外光谱分析法快速检测氨基酸发酵液中各成分稳定可行.  相似文献   

17.
为了建立近红外光谱(NIR)结合THUNIR软件快速测定红参提取过程中的人参皂苷Rg1、Ro、Rb1、Rc和Rb3 5种成分含量的方法.利用对红参提取过程提取液进行NIR在线采集光谱图并采用HPLC测定人参皂苷Rg1、Ro、Rb1、Rc和Rb3的量,结合THUNIR软件建立NIR光谱特征值与HPLC测定结果之间的校正模型,进而对预测集样品进行分析.校正集经内部交叉验证建立校正模型,对预测集样品进行外部验证,预测值与真实值的偏差均较小.利用NIR技术测定红参提取过程中人参皂苷Rg1、Ro、Rb1、Rc和Rb3的含量是可行的,为红参药材的提取过程提供了一种快速简便的监控方法.  相似文献   

18.
应用偏最小二乘法建立了甲醇、 乙醇和水三元混合体系近红外光谱的校正模 型, 采用交互验证方式对模型精度进行检验. 通过选取波长, 使所建模型中甲醇测定相关 系数r达到0.999 91, 交互验证均方根误差(RMSECV)为0.431, 乙醇的r 达到0.999 98, RMSECV为0.193. 用所建模型测定样品, 与气相色谱法 分析结果相近, 相对误差小于3.505%.  相似文献   

19.
以93份燕麦样品为研究对象,对其近红外光谱数据进行预处理后通过主成分分析法提取光谱特征,采用人工神经网络技术建立燕麦中脂肪含量的合理检测模型。结果表明:反向多元散射处理(IMSC)、数学处理选择2441(即对光谱进行导数间隔点为4的二阶导数处理,一次平滑处理间隔点为4,不进行二次平滑处理)为最佳预处理方法;通过主成分分析法提取2个主成分作为原始信息的特征变量,建立的人工网络模型结构为2-17-1,该模型对验证集的测定值与预测值的相关系数为0.962 3,均方根误差为1.607 2,模型的预测准确性较好。该方法简便、快速,为燕麦脂肪的定量测定提供了一种新方法。  相似文献   

20.
用制备的铜掺杂二氧化硅作为吸附剂, 富集雪菊提取液中的木犀草苷, 测量富集有目标组分吸附剂的近红外光谱, 所得光谱经预 处理后, 用偏最小二乘法建立木犀草苷的定量校正模型并进行验证. 结果表明: 当铜掺杂二氧化硅的用量为0.25 g、 常温振荡20 min时, 对木犀草苷吸附率达89.7%; 雪菊提取液中的木犀草苷经吸附剂富集后, 无需脱附可直接检测; 所得近红外光谱经多元散射校正结合一阶导数预处理后, 木犀草苷校正模型的预测质量浓度和参考质量浓度间的相关系数为0.975 0, 交叉验证均方根误差为0.959 8 mg/L, 木犀草苷在1.5~19.5 mg/L的较低质量浓度范围内, 预测集的回收率可达82.6%~111.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号