首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氯化锡催化合成苯甲酸乙酯的研究   总被引:1,自引:0,他引:1  
以苯甲酸和无水乙醇为原料,采用氯化锡(SnCl4·5H2O)作催化剂合成苯甲酸乙酯,考察了催化剂用量、原料配比和反应时间等因素对反应产率的影响.确定了氯化锡作为催化剂的最佳反应条件:n苯甲酸∶n无水乙醇∶n氯化锡=1∶4∶0.01;反应温度为88℃;反应时间为60min;转化率(以苯甲酸计)可达93.5%.  相似文献   

2.
以柠檬酸和乙酸酐为原料,乙酸为溶剂合成柠檬酸酐.用正交实验考察反应时间、反应温度、溶剂用量和物料配比对柠檬酸酐产率的影响.得出的最优化条件为:反应时间18 h,反应温度37℃,摩尔比n(柠檬酸):n(乙酸酐):n(乙酸)为1:1.8:2,产率为84%.产品分子量为174,红外光谱证明产品为五元环状酸酐.  相似文献   

3.
以均匀设计法安排试验,对大豆油在酯交换反应下制备生物柴油的工艺进行了研究.为获得最优制备工艺参数,考查了n(醇)∶n(油)(3∶1~8∶1)、催化剂质量分数(0.4%~1.4%)、反应温度为(45~70℃)、反应时间(40~140min)及其交互作用对生物柴油产率和原料转化率的影响.结果表明:n(醇)∶n(油)、催化剂用量可显著地影响生物柴油的产率和原料转化率.同时甲醇与反应温度、催化剂与反应时间之间存在对抗效应,而甲醇与反应时间、催化剂与反应温度、反应温度与反应时间之间则存在协同作用.利用回归分析和BP神经网络,确定最优工艺参数为:n(醇)∶n(油)=6∶1;催化剂质量分数1.0%;反应温度45℃;反应时间30min.经液相色谱仪测定,生物柴油产率高达97.6%.  相似文献   

4.
以固体氢氧化钠、格尔伯特二十醇和环氧氯丙烷为原料,采用四丁基溴化铵为相转移催化剂,合成了2-辛基十二烷基缩水甘油醚。讨论了原料摩尔比、四丁基溴化铵的用量、反应温度、反应时间对反应产率的影响。最终确定最佳反应条件是:n(格尔伯特二十醇)∶n(环氧氯丙烷)∶n(固体氢氧化钠)=1.00∶1.15∶1.20;四丁基溴化铵用量为0.05(相对醇的摩尔比);反应温度为50℃;反应时间为4 h。在此条件下可得产率为79.8%的2-辛基十二烷基缩水甘油醚,用盐酸-丙酮法测得其环氧值为0.232。最终产物结构通过红外光谱分析得到证实。  相似文献   

5.
以α-十六烯、二苯醚在催化剂的作用下合成十六烷基二苯醚,再采用氨基磺酸作为磺化剂,尿素为助溶剂成功合成了十六烷基二苯醚双磺酸钠,对合成过程中烷基化与磺化反应的工艺条件进行了优化。烷基化的最佳反应条件为:n(α-十六烯):n(二苯醚)=1:1,反应温度为80℃,反应时间为6h,烷基化的产率可达85.42%。磺化的最佳反应条件为:n(烷基二苯醚):n(氨基磺酸)=1:4,反应温度为95℃,反应时间为2h,磺酸基数目为1.84。  相似文献   

6.
以甘氨酸和硫酸亚铁铵为原料,采用固相研磨法和固相熔融法合成了甘氨酸亚铁络合物.固相研磨法合成的最佳条件为n甘氨酸∶n硫酸亚铁铵=2∶1(摩尔比),反应温度25℃,反应时间10 min,产率达94.8%.固相熔融法合成的最佳条件为n甘氨酸∶n硫酸亚铁铵=2∶1(摩尔比),反应温度75℃左右,反应时间2 min,产率达97.8%.用元素分析、IR、UV、差热-热重分析等手段对两种方法合成的络合物的结构和成分进行表征,确定其化学式为(NH2CH2COO)2Fe.2H2O.  相似文献   

7.
可膨胀石墨催化合成三乙酸甘油酯   总被引:1,自引:0,他引:1  
以甘油和乙酸酐为原料、可膨胀石墨为催化剂合成了三乙酸甘油酯.研究了甘油和乙酸酐的摩尔比、催化剂用量、反应时间诸因素对产率的影响.实验结果表明可膨胀石墨是合成三乙酸甘油酯的良好催化剂.最佳反应条件:n(甘油):n(乙酸酐)=1:4.2,催化剂用量为反应物料总质量的1.5%,反应时间2 h,此条件下产率可达98.3%.  相似文献   

8.
以甘露醇为原料,碘作催化剂合成二异亚丙基-D-甘露醇,考察了影响反应的因素,结果表明反应的最佳条件为:n(D-甘露醇)∶n(丙酮)∶n(碘)=1∶25∶0.002,反应温度为30℃~35℃,反应时间12h,产率可达79.4%。  相似文献   

9.
以蔗糖、芥酸为原料,首先芥酸甲酯化合成芥酸甲酯;然后以硬脂酸钾为乳化剂,使芥酸甲酯与蔗糖在较低温度下达到相溶状态,在均相条件下进行酯交换反应合成芥酸蔗糖酯.考察了不同的糖酯比、反应温度、反应时间等对芥酸蔗糖酯产率的影响,得到了较佳的反应条件:n(蔗糖)∶n(芥酸甲酯)=1.5∶1;乳化剂(硬脂酸钾)用量为6%;催化剂(碳酸钾)用量为7%;反应时间为4 h;反应温度为135℃.芥酸蔗糖酯的产率(以单酯含量计)为46.57%.  相似文献   

10.
烷基二苯醚双磺酸盐的合成与性能   总被引:2,自引:0,他引:2  
以α-十二烯、二苯醚及氯磺酸为原料合成十二烷基二苯醚双磺酸盐,对合成过程中的烷基化和磺化反应的工艺条件进行了优化,并用LC/MS进行了表征.单烷基化的较佳反应条件是:反应时间4 h,n(二苯醚)∶n(α-十二烯)=1.0∶1.0,反应温度为70℃,烷基化的产率达88%;磺化的较佳反应条件是:反应时间20 min,n(烷基二苯醚)∶n(氯磺酸)=1∶5,反应温度为10℃,磺酸基的数目为1.86.最后考察了合成样品的表面化学性能及应用性能.  相似文献   

11.
12.
青海柴达木循环经济试验区主要为氯化物型盐湖,在开发过程中会产生大量含氯副产物。平衡和消纳这些含氯副产物,对于实现盐湖产业链中的氯平衡具有重要意义。从柴达木循环经济试验区总体规划的主要产品出发,分析了氯元素在规划产品中的工业代谢过程,提出了氯平衡和氯化钙对盐湖的潜在污染问题是盐湖氯元素利用面临的两大主要问题,转化为固体产品的固定化过程、转化为可外销有机氯产品的转移过程和氯化钙的清洁储存过程是其3种迁移转化途径。这3种途径若付诸实施,有望实现试验区氯元素的基本平衡。  相似文献   

13.
考察了在硫酸钙晶须制备过程中氯化钠和氯化钙杂质对晶须形貌的影响。对制得的硫酸钙晶须进行了SEM和XRD分析。结果表明,随着氯化钠和氯化钙浓度的增大,晶须的直径增大,长度变短,长径比减小。  相似文献   

14.
通过实验探讨了以高岭土作原料制取铝盐和聚合氯化铝的理论基础和工艺条件,并指出碱式氯化铝和聚合氯化铝是具有不同结构和性质的两种物质。  相似文献   

15.
聚合氯化铝又称PAC,是一种无机高分子化合物。其净水功能优异。本文试探用铝矾土为基本原料生产PAC的较佳方法。  相似文献   

16.
钙离子与钠离子对浆料Zeta电位的影响   总被引:3,自引:0,他引:3  
用氯化钙和氯化钠调节添加了不同化学助剂的去金属离子浆料电导率,用德国mütek 公司SZP-04型Zeta电位仪检测对比浆料Zeta电位的变化情况,探讨了Na+和Ca2+对浆料Zeta电位的不同影响,并应用Minitab软件对实验测得的结果进行量化分析。结果表明:无机盐离子使浆料Zeta电位绝对值下降,Ca2+对浆料Zeta电位绝对值的降低作用高于Na+。浆料Zeta电位(ζ)随浆料电导率(σ)以及浆料初始Zeta电位值(ζ0)的变化符合数学模型:ζ=-0.388+0988ζ0+0.202lnσ-ζ00.091lnσ(氯化钙调节电导率时), ζ=-0.806+ 0.960ζ0-0.316lnσ-ζ00.102lnσ(氯化钠调节电导率时)。浆料Zeta电位在等电点附近时,CPAM的助留助滤性能最佳。与Na+相比,Ca2+更容易使造纸系统的Zeta电位值过高甚至达到正值,从而影响浆料的性能。  相似文献   

17.
研究比较了重量法和烘干法测定氯化钾、氯化铯单盐以及混合溶液浓度的准确性.得出对于单盐溶液,氯化银重量法、四苯硼钠重量法和烘干法均能相对准确地测定其浓度;对于混合溶液,烘干法与重量法相比更加准确;研究表明烘干法更适于三元体系KCl-CsCl-H_2O中钾铯含量的准确测定.  相似文献   

18.
聚氯乙烯三氯化铁催化合成肉桂酸酯   总被引:31,自引:0,他引:31  
利用聚氯乙烯三氯化铁树脂为催化剂,使肉桂酸和不同醇反应合成了肉桂酸甲酯,肉桂酸乙酯,肉桂酸正丙酯,肉桂酸正丁酯,肉桂酸异丁酯,肉桂酸正戊酯和肉桂酸异矾酯,测定了各种酯的沸点(或熔点),折射率和红外光谱,并进行了元素分析。  相似文献   

19.
试验采用聚合氯化铝(PAC)、三氯化铁(FeCl3)及氧化钙(CaO )3种混凝剂对某玉米深加工企业的含磷废水进行混凝试验,考察药剂投加量、原水p H及反应时间对污水中PO3-4—P的去除效果,以便为后续污水深度处理工艺改造提供参考。  相似文献   

20.
在20=0.05、0.10、0.15、0.20、0.25的葡萄糖水溶液中加入NaCl、KCl,在293.15K-323.15K下测定了该溶液的密度及粘度。回归计算了NaCl、KCl在该体系中的密度参数及粘度B系数。结果表明,在葡萄糖含量及NaCl、KCl浓度一定的情况下,体系的密度和粘度随温度升高而减小;在同一温度及NaCl、KCl浓度下,随葡萄糖含量的增加体系的密度和粘度随之增加;两种电解质的B系数随葡萄糖含量的增加及温度的升高也增大;在此基础上进一步讨论了该体系内部溶质—溶剂、溶质—溶质间的相互作用,说明了NaCl、KCl对葡萄糖水溶液的结构会有一定的促进和破坏作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号