首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The influence of the microstructure on mechanical properties and corrosion behavior of the Mg–1.21Li–1.12Ca–1Y alloy was investigated using OM, SEM, XRD, EPMA, EDS, tensile tests and corrosion measurements. The results demonstrated that the microstructure of the Mg–1.21Li–1.12Ca–1Y alloy was characterized by α-Mg substrate and intermetallic compounds Mg2 Ca and Mg24Y5. Most of the fine Mg2 Ca particles for the as-cast alloy were distributed along the grain boundaries, while for the as-extruded along the extrusion direction. The Mg24Y5 particles with a larger size than the Mg2 Ca particles were positioned inside the grains. The mechanical properties of Mg–1.21Li–1.12Ca–1Y alloy were improved by the grain refinement and dispersion strengthening. Corrosion pits initiated at the α-Mg matrix neighboring the Mg2 Ca particles and subsequently the alloy exhibited general corrosion and filiform corrosion as the corrosion product layer of Mg(OH)2and Mg CO3 became compact and thick.  相似文献   

2.
The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation(MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid(SBF) were studied systematically. Scanning electron microscope(SEM) and X-ray diffractometer(XRD)were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2and the calcium phosphate(Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.  相似文献   

3.
Relative contribution of individual strengthening mechanisms to the yield strength of Mg–0–15 wt%Gd alloys were investigated.Alloys with different grain size were prepared by adding Zr and hot extrusion.Hardness and tensile/compression yield strength were tested on the alloys after solid solution treatment and extrusion.HallPetch constants were calculated with hardness and tensile/compressive data.The results showed that the hardness of Mg–Gd alloys with similar Gd content and different grain size were almost the same,which indicates that grain size had little effect on hardness.The hardness linearly increased with rising Gd content(d H_v/dc≈25 kg mm~(-2)/at%Gd).The tensile and compressive yield strengths enhanced with the increase of Gd content for all alloys in different conditions.In addition,the tensile/compressive(t/c)yield asymmetry of extruded alloys decreased with increasing Gd content.Large t/c yield asymmetry ratio(1.77)was observed for pure Mg,and with increasing Gd content this value decreased to 1.With the increasing of tensile strength,the stress intensity factor,k_y,decreased from 0.27 MPa m~(1/2)for Mg–2 wt%Gd alloy to 0.19 MPa m~(1/2) for Mg–5 wt%Gd alloy,then increased to 0.29 MPa m~(1/2) for Mg–15 wt%Gd alloy.However,k_yincreased linearly form 0.16–0.31 MPa for compression test.The influence of grain size strengthening was eliminated,and the yield strength of tension and compression both linearly increased with c~n,where c is the atom concentration of Gd,and n=1/2 or 2/3.  相似文献   

4.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

5.
The effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–xZn–0.2Ca alloys (x=0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) are investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstructure of the 0.6Zn alloy is composed of α-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain α-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, with increasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides an updated investigation of the alloy composition–microstructure–property relationships of different Zn-containing Mg–Zn–Ca alloys.  相似文献   

6.
Corrosion behavior of Mg-Y alloy in NaCl aqueous solution   总被引:1,自引:0,他引:1  
The corrosion behavior of Mg-(0.25,2.5,5.8 and 15)Y alloys in 3.5wt.% NaCl aqueous solution was investigated.It was found that the degree of corrosion deterioration increased with increasing immersion ...  相似文献   

7.
Zn-Fe alloys have been extensively investigated in this study with a view to their application as biodegradable bone implants. Biogenic element zinc is a very appropriate metal because of the ideal degradation rate compared to those of Mg and Fe. Studied alloys were made by compressing metallic powders in a content ratio of 100% Zn,Zn-1% Fe, Zn-2% Fe, Zn-5% Fe and Zn-10% Fe and sintering at 350°C for 1 h. Prepared samples were examined by optical microscopy, SEM and XRD. Corrosion behavior, mechanical testing and hemocompatibility were observed subsequently. The electrochemical performance of such materials was studied in the simulated body fluids. The enhanced corrosion rate was observed for all samples after iron addition due to the micro-galvanic effect between the pure Zn and Zn_(11)Fe intermetallic phase. The corrosion rate of the Zn-5% Fe alloyed sample was more than 20-times higher(2.89 mmpy) compared to the pure Zn. However, alloying with more than 5 wt %of iron diminished the mechanical performance of the material. Therefore, the performed mechanical and hemocompatibility tests showed acceptable biocompatibility of zinc and Zn-1% Fe and Zn-2% Fe samples.  相似文献   

8.
As-extruded Mg–5Sn–1Zn–xAl alloys(x=1, 3, and 5) were fabricated by hot extrusion. The experimental results revealed that the yield strength of alloys initially decreased and then increased with the increase of Al content. These changes were mainly attributed to the difference in crystallographic texture and volume fractions of second phases. The ultimate tensile strength, yield strength, and elongation of the alloys were greater than 310 MPa, 227 MPa, and 11%, respectively. The strain hardening ability of the alloys was also discussed.  相似文献   

9.
The tied-arch action was analyzed by considering 27 reinforced-concrete beams without web reinforcements that were dismantled from a wide range of deteriorated coastal and marine structures and with varying degrees of reinforcement corrosion. Under 2-point loading and changing shear span ratio, changes in loading capacity for beams of the same corrosion degree were studied. Formulas relating ultimate moment of reinforcements with the same corrosion level at increasing aid ratio were then developed. Load-carrying capacity profile for beams with reinforcement corrosion of 1% and the same cross section was described. The minimum ultimate moment occurs at aid = 2.5 and at 52% of the full flexural moment, suggesting that the difference in ultimate moment between theoretical and experimental results at the minimum point equals 11%. The results show that the developed theoretical relations compared well with experimental values.  相似文献   

10.
The influence of Nd addition on the glass-forming ability (GFA), microhardness, and corrosion resistance of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg35Cu40Nd25 ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper (NPC) was synthesized through a single-step dealloying of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L-1 H2SO4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.  相似文献   

11.
The influence of Nd addition on the glass-forming ability(GFA), microhardness, and corrosion resistance of Mg_(60-x)Cu_(40)Nd_x(x = 5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg_(35)Cu_(40)Nd_(25) ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper(NPC) was synthesized through a single-step dealloying of Mg_(60-x)Cu_(40)Nd_x(x = 5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L~(-1) H_2SO_4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.  相似文献   

12.
The microstructures and corrosion behavior of AM60B magnesium alloys, produced by both high-pressure die casting (HPDC) and super vacuum die casting (SVDC) processes, were investigated by a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), and slow positron beam technique. XRD confirmed that calcium carbonate (CaCO3) deposited on the surface of alloys during the early stages of corrosion, and the deposition rate of CaCO3 for SVDC with corrosion time was slower than that of HPDC. SEM observation found that the -phases in the skin surface of SVDC alloy had a greater volume fraction and more continuous distribution than that of HPDC alloy, leading to lower volume fraction of CaCO3 deposited on surface of SVDC alloy for the same corrosion time. The slow positron beam Doppler broadening measurement revealed that the thickness of surface corrosion layer increased with corrosion time. Compared with HPDC alloy, the increase rate of thickness for SVDC alloy is slower, which implied that SVDC alloy exhibited a better corrosion resistance than HPDC alloy.  相似文献   

13.
A study of biocompatibility and corrosion of both metallic magnesium(Mg) and a magnesium alloy containing 1% calcium(Mg–Ca) were investigated in in vitro culture conditions with and without the presence of bone marrow derived human mesenchymal stem cells(h MSCs).Chemical analysis of the degraded samples was performed using XRD and FEGSEM. The results from the XRD analysis strongly suggested that crystalline phase of magnesium carbonate was present on the surface of both the Mg and Mg–Ca samples. Flame absorption spectrometry was used to analyse the release of magnesium and calcium ions into the cell culture medium. Magnesium concentration was kept consistently at a level ranging from 40 to 80 m M for both Mg and Mg–Ca samples. No cell growth was observed when in direct contact with the metals apart from a few cells observed at the bottom of culture plate containing Mg–Ca alloy. In general, in vitro study of corrosion of Mg–Ca in a biologicallysimulated environment using cell culture medium with the presence of h MSCs demonstrated close resemblances to in vivo corrosion. Although in vitro corrosion of Mg–Ca revealed slow corrosion rate and no immediate cytotoxicity effects to h MSCs, its corrosion rate was still too high to achieve normal stem cell growth when cells and alloys were cultured in vitro in direct contact.  相似文献   

14.
This article explores the effects of phosphorus addition on the wettability between Sn-9Zn solder alloy and Cu substrates, the oxidation behavior and the corrosion behavior of Sn-9Zn solder alloy. Spreading test was used to characterize the wettability of Sn-9Zn-xP solder alloys to Cu substrates. The oxidation and corrosion behaviors of Sn-9Zn-xP solder alloys were determined by means of weight gaining, and secondary ion mass spectrometry was used to analyze the oxygen content. The role and mechanism of P in the solder alloys were also discussed. It is found that the addition of P can significantly improve the wettability of the solder alloys. Incorporating P into Sn-9Zn solder alloy obviously decreases the oxygen content and enhances the oxidation and corrosion resistance. Microstructure observations show that an appropriate amount of P can greatly refine coarse rod-like Zn-rich phases in Sn-9Zn solder alloy.  相似文献   

15.
Zr_xV_5 Fe(x=3,5,7,8,9) alloys were designed to investigate the influence of Zr addition on hydrogenation performance.The alloys were prepared by arc melting and then annealed at 1273 K for 168 h.The results showed that the alloys were composed of α-Zr and C15-ZrV2 phases.The cell volume of C15-ZrV_2 phase firstly increased and then decreased as the content of Zr increased,while the reversed trend was found for the cell volume of α-Zr phase,which was related to the stoichiometric ratio of elements.α-Zr phase distributed in C15-ZrV2 phase matrix in Zr_xV_5 Fe(x=5,7,8,9) alloys,among which Zr7 V5 Fe alloy showed the best distribution.The PCT curves of the alloys under 623 K,673 K and 723 K showed that the hydrogen absorption plateau pressure of the phases in different alloys decreased gradually with the increasing content of Zr.However C15-ZrV2 phase in Zr7 V5 Fe alloy had the lowest hydrogen absorption plateau pressure at room temperature,which was consistent with the change tendency of the corresponding cell volume.Moreover,the kinetic curves of hydrogen absorption at 623 K revealed that Zr7 V5 Fe alloy with the smallest average particle size and the largest phase boundary area showed the fastest hydrogen absorption kinetics.Compared with other four alloys(including St707 alloy),Zr_7 V_5 Fe alloy is more suitable for the use of getter.  相似文献   

16.
The effect of Al addition on microstructure and mechanical properties of hot extruded Mg–1 Mn alloy sheet was investigated. The results revealed that the dynamic recrystallization was promoted by increasing Al content. The ultimate tensile strength and yield strength of the alloy increased with the increase of Al content. The Mg–9 Al–1 Mn alloy exhibited the highest strength, with tensile strength of 308 MPa, 307 MPa, 319 MPa, yield strength of 199 MPa, 207 MPa, 220 MPa and the elongation of 20.9%, 20.1%, 19.2% in 0°, 45°, 90°, respectively.The high strength was mainly attributed to the formation of fine dynamically recrystallized grains and large amounts of the second phase. The strengthening mechanism of the alloys was explained.  相似文献   

17.
The microstructure and electrochemical properties of Al–Cu–Fe alloys with the atomic compositions of Al_(65)Cu_(20)Fe_(15),Al_(78)Cu_7Fe_(15)and Al_(80)Cu_5Fe_(14)Si_1have been studied.The alloys were produced by induction melting of pure elements with copper mold casting.The microstructure of the alloys was analyzed by X-ray diffraction and high-resolution transmission electron microscopy.The formation of quasicrystalline phases in the Al–Cu–Fe alloys was confirmed.The presence of intermetallic phases was observed in the alloys after crystallization in a form of ingots and plates.The electrochemical measurements were conducted in 3.5%NaCl solution.The electronic structure of the alloys was determined by X-ray photoelectron spectroscopy.The post corrosion surface of the samples was checked using a scanning electron microscope equipped with the energydispersive X-ray detector.It was observed that the Al_(65)Cu_(20)Fe_(15)alloy had the highest corrosion resistance.The improved corrosion resistance parameters were noted for the plate samples rather than those in the as-cast state.And the hardness of the Al_(65)Cu_(20)Fe_(15)alloy was significantly higher than the other alloy samples.  相似文献   

18.
The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures. The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable. With the increase of Mg content in the Al alloys from 0wt% to 8wt%, the infiltration will become much easier, the incubation period becomes shorter and the infiltration rate is faster, but these effects are not obvious when the Mg content is higher than 8wt%. As for Si addition to the Al alloys, it has no obvious effect on the incubation period, but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%. The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.  相似文献   

19.
To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) alloys in a 5wt% NaCl solution was investigated using immersion test and electrochemical measurements. The results of immersion test show that Mg-5Zn-0.3Zr-2Nd alloy exhibits the best corrosion resistance among the tested alloys. Electrochemical measurements show that secondary phases in RE-containing Mg-5Zn-0.3Zr alloys behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. The additions of Nd and Y into Mg-5Zn-0.3Zr alloy also improve the compactness of the corrosion product film and are beneficial to the corrosion resistance.  相似文献   

20.
The high performance of as-cast Mg-RE alloys is always related to their high RE additions.However,RE elements can be readily segregated in Mg alloys and the segregation becomes more significant with the increasing RE content.In this research,the effect of cooling rate on the macro-and micro-segregation in the as-cast Mg-8 Gd alloy was studied.The Gd content at the bottom of the fabricated ingot with the cooling rate of 4.6-6.9℃/s was~1.7 times of that at the top and coarse eutectics as well as some non-equilibrium phases of α-Gd,MgGd,Mg_2 Gd were distributed along the grain boundaries.The formation mechanisms of the specific gravity segregation and grain boundary segregation were also proposed.Upon the application of the water-cooled copper mold with the cooling rate of 27-200℃/s,only fine Mg5 Gd and some nanoscale metastable β_1 and β' phases were found to disperse uniformly in the grain interior,thus the homogeneity of the composition,microstructure,and performance within the whole ingot was considerably improved.It is expected that these results will facilitate the processing design for the fabrication of the highly-homogenized Mg-RE alloy castings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号