首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对传统混合动力汽车控制方法不考虑已知道路交通信号灯信息对车辆能量管理影响的问题,提出了基于交通信号灯信息的混合动力汽车节能预测控制智能优化策略。通过建立混合动力汽车系统的简化模型,并采用连续广义最小残量方法求解模型预测控制问题。运用MATLAB/Simulink进行仿真,仿真结果验证了交通信号灯信息模型的有效性,以及所设计的模型预测控制算法大幅度提高混合动力汽车的燃油经济性的能力和实时控制性能。研究结果表明所提出的控制策略可以实现车辆行驶轨迹的优化控制,显著提高了车辆的燃油经济性,并满足系统的实时最优控制要求。  相似文献   

2.
针对目前液压挖掘机能量利用率低、油耗高的问题,分析挖掘机在典型作业工况下的能量损耗,确定混合动力系统进行节能研究的重要方向.根据混合动力挖掘机的特点,提出基于超级电容与电机的并联式油电混合动力系统方案,以山河智能公司20吨级液压挖掘机为平台建立系统仿真模型,对系统动力耦合特性、控制策略及超级电容SOC等因素给混合动力挖掘机节能效果带来的影响进行理论计算和仿真分析,并对系统关键参数进行了优化匹配.搭建液压挖掘机混合动力系统试验平台,对系统的节能效果进行试验验证.研究结果表明,采用油电并联混合动力系统,并选择合适的动力耦合参数、瞬时优化控制策略及超级电容SOC补偿参数有利于提高液压挖掘机的节能指标,节能效率可改善20%以上.  相似文献   

3.
混合动力技术是实现汽车节能减排的有效途径。本文P2混合动力汽车为研究对象,考虑SOC状态分别为高、中、低三种不同的电量模式时,设计不同的能量管理策略,以实现混合动力汽车节能减排的同时维持SOC的平衡的目的。该策略在基于规则的基础上采用Isight软件中的多目标遗传算法对门限值进行优化,以提高能量管理策略中门限值的可靠性和有效性。仿真结果表明该能量管理策略对降低车辆油耗的效果显著,并且能很好的维持电池SOC的平衡。  相似文献   

4.
插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)的电池容量大,能够接入外部电网充电;兼具燃油动力和电动驱动系统的优点,被认为是传统燃油汽车向纯电动汽车过渡的最佳方案。能量管理系统是实现整车需求能量在发动机和电动机之间分配的关键,插电式混合动力汽车的经济性、动力性与所采用的能量管理策略密切相关。对插电式混合动力汽车能量管理策略的研究发展进行了综述,对比了各种基于规则和基于优化的能量管理策略的优缺点,分析了驾驶数据与交通信息对能量管理策略的影响及存在的问题,最后,提出了插电式混合动力汽车能量管理策略的发展方向,为今后插电式混合动力汽车的研究提供参考。  相似文献   

5.
为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforcement learning,DRL)结合的分层能量管理策略。仿真结果证明,该分层控制策略不仅可以让强化学习中的智能体在无模型的情况下实现自适应节能控制,而且能保证混合动力汽车在所有工况下的SOC都满足约束限制。与基于规则的能量管理策略相比,此分层控制策略可以将燃油经济性提高20.83%~32.66%;增加智能体对车速的预测信息,可进一步降低5.12%的燃油消耗;与没有分层的深度强化学习策略相比,此策略可将燃油经济性提高8.04%;与使用SOC偏移惩罚的自适应等效燃油消耗最小策略(A-ECMS)相比,此策略下的燃油经济性将提高5.81%~16.18%。  相似文献   

6.
混合动力汽车扭矩管理策略   总被引:15,自引:0,他引:15  
能量管理策略是混合动力汽车技术中研究的重要内容之一。该文提出的扭矩管理策略具有稳态能量管理策略的特征。在Matlab/Simulink仿真平台上建立了前向式混合动力汽车模型,并在模型基础上对驱动方式和制动方式下的扭矩管理策略进行了仿真分析。仿真结果表明,扭矩管理策略将扭矩作为最主要的控制变量,以内燃机稳态效率特性图为基础,可以实现对内燃机和电机输出动力的合理分配。扭矩管理策略综合考虑了驾驶员的需求以及混合动力汽车中多个部件的特性,是一种能量的优化管理方法,达到了提高混合动力汽车动力系统效率的目的。  相似文献   

7.
中度混合动力汽车匀速下坡再生制动策略优化   总被引:1,自引:0,他引:1  
分析混合动力汽车匀速下坡再生制动过程;基于蓄电池充电效率模型、蓄电池温升模型及发电机效率模型,分别以混合动力汽车瞬时再生制动能量回收量最大和总制动能量回收量最大为优化目标,提出了瞬时再生制动优化控制策略和全局优化控制策略;分析了蓄电池温度对混合动力汽车再生制动能量回收效率的影响,计算了汽车在不同坡度和坡长的路况上再生制动能量回收效率,结果表明:全局优化控制策略优于瞬时优化控制策略,且坡度愈大或坡长愈长时,采用全局优化控制策略提高再生制动能量回收效率的效果愈显著。  相似文献   

8.
中度混合动力汽车匀速下坡再生制动策略优化   总被引:4,自引:1,他引:3  
分析混合动力汽车匀速下坡再生制动过程;基于蓄电池充电效率模型、蓄电池温升模型及发电机效率模型,分别以混合动力汽车瞬时再生制动能量回收量最大和总制动能量回收量最大为优化目标,提出了瞬时再生制动优化控制策略和全局优化控制策略;分析了蓄电池温度对混合动力汽车再生制动能量回收效率的影响,计算了汽车在不同坡度和坡长的路况上再生制动能量回收效率,结果表明:全局优化控制策略优于瞬时优化控制策略,且坡度愈大或坡长愈长时,采用全局优化控制策略提高再生制动能量回收效率的效果愈显著.  相似文献   

9.
针对并联型混合动力汽车,为了提高燃油经济性,在满足驾驶性能和车辆动力要求的前提下,提出了一种基于智能优化规则的能量管理策略。首先,考虑发动机最优工作区和电池的荷电状态,根据一定的工程经验,选取合适的发动机最优工作区转矩和电池荷电状态的阈值,设计了基于规则的能量管理控制策略。然后,考虑到规则控制中一些阈值参数不确定的问题,应用了一种智能优化算法——粒子群算法优化规则控制策略的阈值参数。最后,将所设计的控制策略在多种国际标准工况下进行仿真对比,结果表明,较纯发动机运行而言,普通规则控制策略可以平均节省14.9%的燃油,而基于智能优化规则的控制策略可以平均节省22%的燃油。  相似文献   

10.
ISG型中度混合动力轿车油门动态协调控制策略   总被引:1,自引:0,他引:1  
采用瞬时优化与定工况下全局优化相结合的方法,对ISG(Integrated Starter/Generator)型中度混合动力汽车的系统效率进行优化,以系统效率最高为优化目标,优化混合动力系统能量管理策略。为了避免混合动力汽车在模式切换或突然加速时,由于发动机油门突变导致的动态油耗增加,当发动机油门开度变化率过大时,采用发动机惯性矩闭环控制和电机补偿控制的方法对中度混合动力系统进行动态协调控制,限制发动机节气门开度变化率,抑制汽油过度喷射,以达到降低油耗的目的。建立了系统仿真模型并进行了仿真模拟,结果表明,通过对混合动力汽车油门的动态协调控制,在保证动力性的条件下,可明显降低混合动力轿车的整车综合油耗。  相似文献   

11.
正在能源短缺和环境污染日益严重的现实背景下,混合动力汽车迎来了高速发展的黄金时期,各个国家都投入了大量的人力、物力进行混合动力技术的研发。能量管理控制策略技术是所有混合动力技术的核心,是混合动力车实现节能、环保的关键所在。模糊逻辑控制策略具有鲁棒性好、实时性强、易于实现等优点,被广泛运用在混合动力汽车上。本文以一辆并联式混合动力汽车为研究对象,以燃油消耗和排放最小为目标,为其构建了模糊控制策略,并在matlab/advisor环境下进行了仿真。  相似文献   

12.
混合动力汽车能量管理策略会影响其动力性和经济性。为了寻找整车的最优节油点及控制策略,文章基于世界轻型汽车测试循环(world light vehicle test cycle, WLTC)工况,提出了利用动态规划算法优化插电式并联混合动力汽车能量管理策略。以发动机、电机的扭矩和角速度作为动态规划的控制变量,以保证电池荷电平衡和燃油最小为目标,建立动态规划模型。仿真结果表明,所提出的能量管理策略能使电池荷电状态(state of charge, SOC)保持在设定范围之内,且相对于基于标定经验规则的能量管理控制策略,节油率能达到5.78%,此方法对于整车厂(original equipment manufacturer, OEM)制定并联式混合动力汽车整车控制器能量控制策略及实车标定工作有一定的参考意义。  相似文献   

13.
针对混合动力汽车制动过程中机械制动力与电再生制动力的分配问题,在制动稳定区间内,以尽可能多地回收制动能量为目标,提出了一种最大化制动能量回收的并联式混合动力汽车再生制动控制策略。建立整车与制动控制器模型,仿真结果表明:与传统固定制动力分配比例的控制策略相比,本文所设计的并联式混合动力汽车的制动能量回收率提高了22.8%,燃油经济性提高了4.7%,CO排放量降低了4.4%。  相似文献   

14.
综合考虑燃油经济性、排放性与驾驶性对混合动力能量管理控制优化的优点,以某款并联混合动力汽车为研究对象,选取能量管理控制参数与传动系参数作为待优化参数,以动力性作为约束条件,建立混合动力能量管理控制多目标优化评价方法,提出基于NSGA-Ⅱ算法的混合动力系统多目标优化方法,并与优化前控制策略进行仿真对比分析。结果表明:在满足基本约束的前提下,优化后燃油经济性最多提高了7.8%,平均提高了6.38%;驾驶性性能指标最多提高了27.12%,平均提高了21.74%;排放性综合指标平均提高了41.51%。提出的多目标优化算法具有良好的收敛性与分布性,得到的Pareto最优解集能够给混合动力能量管理控制策略提供更多的权衡选择方案,体现了多目标优化的优势。  相似文献   

15.
目前国内外学者对插电式混合动力汽车能量管理策略进行了较为广泛和深入的研究,取得了良好的节能减排效果,为进一步提升其性能,有必要对插电式混合动力汽车能量管理策略的研究现状进行总结并对其发展趋势进行分析。首先对插电式混合动力汽车动力源能量流分配方法进行了归纳和分析,指出了当前插电式混合动力汽车能量管理策略两个亟待解决的问题:未考虑发动机冷却液温度和三元催化器温度等温度因素对油耗和排放影响;当前插电式混合动力汽车能量管理策略是以行驶功率需求作为输入,忽略了驾驶室制冷/供暖功率需求。最后提出了计及发动机冷却液温度和三元催化器温度等温度因素的能量管理策略和计及驾驶室制冷/供暖功率需求的能量管理策略两个未来研究方向。  相似文献   

16.
目的改善燃料电池混合动力汽车的燃料经济性,优化混合动力系统能量管理控制.方法采用燃料电池和镍氢蓄电池构成新能源混合动力系统,以最少等效燃料消耗为目标函数,建立了混合动力系统能量分配管理的数学模型,引入惩罚因子对蓄电池的SOC进行调控,HWFET驾驶循环工况优化了混合动力系统实时能量分配结果当SOC介于0.5和0.8之间时,混合动力系统进入瞬时优化能量管理策略;当SOC0.5时,混合动力系统由燃料电池供能并给蓄电池充电;当SOC0.8时,混合动力系统主要由蓄电池供能,动力不足情况下由燃料电池能量补充;在惩罚因子的作用下,SOC将处于一个合理区域,最终使混合动力系统处于最优能量分配管理状态.结论实时功率优化控制策略避免燃料电池处于低功率低效率输出,在燃料电池和蓄电池之间合理分配功率,提高了燃料经济性,同时惩罚因子的引入保证了SOC稳定性.  相似文献   

17.
功率分流式混合动力汽车同时具备串联式和并联式混合动力汽车的优点,但单模功率分流混合动力汽车会产生较高的电损耗。提出一种双模功率分流机构以改善单模功率分流机构的电耗高的缺点,不同于传统多行星齿轮组和多离合器的双模功率分流机构,仅包含单行星齿轮组,利用同步器进行模式切换。使用基于全局优化能量管理策略的后向仿真方法,以燃油经济性为目标,对该功率分流机构和丰田混合动力系统(THS)进行动力传动系统参数优化,并对仿真结果进行能量流分析。结果表明,相较丰田混合动力系统,提出的功率分流机构能降低电损失。  相似文献   

18.
为提高混合动力汽车的智能化控制水平,进一步改善整车燃油经济性和动力性,提出一种多能源动力总成的多智能体协调控制方法.以并联式混合动力汽车为原型,建立动力总成部件子系统智能体模型,构建多智能体系统协调控制框架,根据不同工况模式对总成动力进行预分配,利用单智能体的智能行为和多智能体的协作能力解决车辆对复杂路况的自适应问题.在Cruise软件环境下对智能体控制系统和协调控制策略进行了仿真验证,结果表明,动力总成的多智能体协调控制策略正确可行,使混合动力汽车能根据不同工况自适应控制模式,进而对动力进行自适应匹配,能够改善整车燃油经济性和动力性.  相似文献   

19.
再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一.以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略.所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策.采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究.结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23.44%.  相似文献   

20.
针对传统混合动力汽车复合电源中蓄电池和超级电容的功率平衡问题,提出了一种复合电源能量模糊控制分配系统。该系统设计上通过针对蓄电池的内阻随温度变化和超级电容的本身的充放电特性来优化控制器结构。通过混合动力汽车本身的工作模式来进行分析,模糊控制器使超级电容可以自动变化参考电压使超级电容器输出需求功率中的峰值功率,蓄电池则承担其平均功率。使混合动力汽车在复杂的驾驶环境时,储能系统能够稳定的提供汽车所需要的能量。仿真结果表明该方法可以有效的稳定复合电源中蓄电池的温度使其能够在汽车的各个运行过程中稳定工作的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号