首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HRB 500级钢筋混凝土简支梁受弯试验   总被引:6,自引:1,他引:6  
在3根HRB 500级钢筋混凝土受弯试验的基础上,分析HRB 500级钢筋和高强混凝土匹配下的梁的破坏形态、变形特点和承载性能.结果表明,HRB 500级钢筋混凝土的破坏特征、挠曲模式及截面应变分布与普通高强混凝土梁基本一致.在开裂后,混凝土的刚度明显降低,随着混凝土强度等级或者配筋率的提高,构件的承载力也相应提高.受弯构件的承载力试验值与规范的计算值吻合,梁的裂缝宽度和裂缝间距实测值较规范的计算结果小,梁的挠度实测值比规范的计算值大.  相似文献   

2.
对8根HRB500高强钢筋混凝土梁以及2根普通钢筋混凝土梁受弯性能进行了对比试验,分析了试验梁的裂缝分布、短期最大裂缝宽度以及挠度的变化情况.结果表明:2种钢筋混凝土梁的受弯性能和挠曲模式基本相同;正常使用极限状态下的平均裂缝间距、跨中挠度实测值与按GB50010-2002<混凝土结构设计规范>中平均裂缝宽度与短期刚度...  相似文献   

3.
为研究高强钢筋混凝土柱受压性能,对8根配置600 MPa级钢筋、1根配置HRB400钢筋和1根配置HRB500钢筋的混凝土轴心受压构件进行重复荷载下受力性能的试验,分析混凝土强度、纵筋配筋率和配箍率对600 MPa级钢筋混凝土构件的破坏形态、名义应力—应变曲线和峰值应变的影响。研究结果表明,轴压试件的峰值应力会随着混凝土强度的提高而增大,但峰值应变却略有减小;轴压构件的峰值应变会随纵筋配筋率的增大而增大,但当配筋率较大时,则影响不大;轴压构件的峰值应力和峰值应变随体积配箍率的提高而增大。配置600 MPa级钢筋轴心受压构件的受压承载力可按现行规范规定的公式计算,建议600 MPa级钢筋的抗压强度设计值取400 N/mm~2。  相似文献   

4.
为了研究配置高强钢筋混凝土梁开裂后的使用性能,对14根配置500MPa钢筋的混凝土梁进行了受弯性能试验.给出了梁侧面裂缝宽度沿裂缝高度的分布规律;梁底面裂缝宽度沿梁宽变化规律;典型位置处平均裂缝宽度与弯矩关系等,并对裂缝宽度值进行了统计分析.由本次试验和其他相关试验的数据分析表明:在钢筋应力较高时产生的次生裂缝会明显抑制主裂缝的扩展速度;我国现行规范的裂缝宽度公式的计算值明显大于试验值,不适用于配置高强钢筋混凝土梁的情况.对钢筋高应力下的裂缝宽度主要影响因素进行了分析,并提出了配置高强钢筋混凝土梁裂缝宽度的2种计算模式.建议公式与试验结果吻合较好.  相似文献   

5.
HRB400级钢筋混凝土构件受剪性能试验   总被引:1,自引:1,他引:0  
进行了用HRB400级钢筋作箍筋的受剪梁的试验,观测了试件在剪力作用下的破坏形态、变形特征、荷载一应力曲线、极限承载力等。试验结果表明,此类构件受力性能稳定,箍筋可以达到屈服,破坏形态与普通箍筋受剪梁类似。按照现行规范计算受剪承载力,实测值与计算值比值的平均值为1.48,余量较大,箍筋设计强度取为360MPa,可以满足设计的要求。  相似文献   

6.
为研究配置500 MPa纵向热轧带肋钢筋的混凝土梁的裂缝特征及评估相关规范裂缝计算公式的适用性,进行了22根钢筋混凝土梁受弯性能试验,得到22个平均裂缝间距和92组裂缝宽度数据,相应的钢筋应力范围在201~482MPa,这些试验数据可反映钢筋应力较高情况下受弯构件的裂缝开展特点.试验结果表明,按规范GB50010—2002公式计算的平均裂缝间距、平均裂缝宽度和最大裂缝宽度比试验值普遍偏大,二者之比的均值分别为1.127,1.557和1.535.根据试验结果,提出配置500 MPa带肋钢筋的混凝土梁的裂缝宽度计算公式修正建议,并给出梁侧面钢筋处和受拉边缘的平均裂缝宽度的换算关系式,建议公式的计算值和试验值符合较好.  相似文献   

7.
配置500 MPa钢筋的混凝土梁受弯性能试验   总被引:3,自引:0,他引:3  
为了研究配置500MPa钢筋的混凝土梁的受弯性能,对9根矩形截面混凝土梁进行了试验研究.分析了采用500MPa钢筋的混凝土构件的正截面受弯承载力及使用阶段的裂缝宽度,同时对其中两组配有蒙皮钢筋的梁进行受弯承载力、变形及裂缝宽度的对比分析.试验结果表明,此类构件的受力性能与普通钢筋混凝土受弯构件相同,可按照《混凝土结构设计规范》计算受弯承载力及裂缝宽度,但应对裂缝宽度计算值进行适当修正.同时,蒙皮钢筋的配置能够有效地限制裂缝的发展,使得试验梁在正常使用阶段能够满足裂缝宽度限值要求.  相似文献   

8.
为研究钢筋搭接接头对钢筋混凝土梁受弯性能的影响,验证现有钢筋搭接长度修正系数是否能满足《混凝土结构设计规范》(GB?50010—2010)的正常使用极限状态限值要求,以钢筋搭接长度和搭接百分率为变量,完成了16根两点集中荷载作用下受力钢筋搭接钢筋混凝土简支梁受弯性能试验. 对试件的裂缝发展、裂缝宽度、裂缝间距、破坏形态、受弯承载力和跨中挠度等进行了观测. 试验结果表明:搭接百分率及钢筋搭接长度对试验梁的承载能力及变形有较大影响,钢筋搭接长度较大的梁试件均能满足承载能力要求;在使用阶段荷载下,试验梁的跨中挠度均满足限值要求,但钢筋搭接长度较小的梁裂缝宽度不满足限值要求. 基于试验数据并考虑搭接百分率及钢筋搭接长度两个参数,给出了钢筋搭接梁最大裂缝宽度与钢筋无搭接梁最大裂缝宽度的关系,并提出了钢筋搭接长度修正系数的建议值,以此为基础对我国混凝土结构设计规范及美国ACI 318规范的合理性进行了探讨.  相似文献   

9.
为了研究钢筋锈蚀下混凝土箱梁挠度和裂缝宽度的变化,基于梁截面平衡和变形协调,引入锈蚀钢筋混凝土梁非线性本构关系,建立了箱梁受弯挠度和裂缝宽度解析表达式。针对铁路简支箱梁算例,研究了混凝土性能退化和钢筋锈蚀对梁挠度和裂缝宽度的影响;并和铁路桥梁规范中挠度和裂缝宽度的规范值进行了对比分析。结果表明:混凝土性能的退化对梁挠度和裂缝宽度影响很小;锈蚀钢筋力学性能的退化和锈蚀黏结滑移对挠度和裂缝宽度具有较大影响。当锈蚀率小于1.5%时,挠度和裂缝宽度均小幅减小;当锈蚀率超过1.5%后,挠度和裂缝宽度随着锈蚀率的增加开始增大。针对规范中挠度和裂缝宽度公式,提出了锈蚀黏结滑移修正系数,修正后的规范值与解析解吻合良好。  相似文献   

10.
为研究HRB600E高强钢筋混凝土柱抗震性能,对6根配置HRB600E高强钢筋与1根配置HRB400E普通钢筋的正方形截面混凝土柱进行低周往复荷载试验.研究轴压比、箍筋间距、纵筋强度和纵筋配筋率对高强钢筋混凝土柱抗震性能的影响,建立HRB600E高强钢筋混凝土柱恢复力模型.研究结果表明:配置HRB600E高强钢筋混凝土柱的滞回性能、变形能力与耗能能力良好;轴压比增大,试件延性降低,承载力与耗能能力提升;减小箍筋间距,试件变形能力与耗能能力增强;增大纵筋配筋率,试件承载力提升,耗能能力与延性降低;建立的HRB600E高强钢筋混凝土柱三线型恢复力模型与试验结果吻合较好,为工程结构弹塑性分析提供参考.  相似文献   

11.
为研究将高强钢筋用于超高性能混凝土(UHPC)的可行性,通过6根梁的正截面抗弯试验,研究了配筋率、截面形式(矩形与T形梁)等对抗弯性能的影响规律.试验结果表明,HRB500级钢筋与UHPC适配良好,可充分发挥两者高强性能;配筋率对开裂荷载影响小,但可显著提高梁的极限承载力;为防止梁发生斜截面破坏,需要按计算配置箍筋;UHPC梁裂缝细而密,考虑受拉区UHPC塑性变形而建立的开裂弯矩公式与实测值吻合良好;据简化的UHPC本构模型建立的正截面极限承载力公式,预测精度较高.  相似文献   

12.
为研究配置HRB600高强钢筋钢纤维整体增强混凝土梁柱节点的抗震性能和核心区受剪承载力,进行10个梁柱节点的拟静力试验,研究轴压比、剪压比、配箍率、混凝土种类和钢纤维混凝土的增强范围等对配置HRB600钢筋混凝土梁柱节点抗震性能指标的影响.结果表明:钢纤维整体/局部增强的HRB600钢筋混凝土梁柱节点的滞回曲线更饱满,刚度退化速率更慢,耗能更高.钢纤维混凝土能够显著改善试件的破坏形态,减轻节点的累积损伤.采用《建筑抗震设计规范》计算HRB600高强钢筋钢纤维混凝土梁柱节点的受剪承载力时,对于配箍率较低的节点较为保守,对于配箍率较高的节点的计算结果更接近于试验值.美国ACI 352—02规范比中国《建筑抗震设计规范》的受剪承载力计算值的安全储备高.  相似文献   

13.
基于黏结-滑移理论对钢筋混凝土受弯构件裂缝宽度的计算进行说明,指出采用数值计算方法进行分析的必要性.在综合考虑钢筋与混凝土间的黏结-滑移效应、裂缝间混凝土拉伸硬化效应以及材料非线性本构关系等问题的基础上,建立钢筋混凝土梁构件裂缝宽度计算的数值模犁.以8根HRB500级高强钢筋混凝土梁受弯开裂试验为例,将试验结果、规范公式计算结果以及数值模型预测结果进行对比分析.研究结果表明:试验梁短期最大裂缝宽度的模型预测结果与试验结果较符合,两者比值的均值为1.098,变异系数为0.146 5;而规范公式计算值则普遍大于试验值,需要进行适当修正.取等间距开裂的模型梁进行算例分析,得出平均裂缝宽度预测值与规范公式的计算值较吻合,进一步验证了该数值计算模型是一种有效的、准确的裂缝宽度分析方法.  相似文献   

14.
采用通电方式对配置HRB500级钢筋和普通钢筋的混凝土板进行加速锈蚀,并对锈蚀钢筋混凝土板进行抗弯承载力试验研究. 对比分析了不同锈蚀程度下钢筋混凝土板的破坏形态、抗弯承载能力、荷载-挠度曲线. 同时,通过试验研究了锈蚀钢筋受拉性能和黏结性能随锈蚀程度不同的变化规律. 考虑板内不同锈蚀程度的钢筋可能发生受拉屈服或黏结滑移破坏,提出锈蚀钢筋混凝土板抗弯承载力计算方法. 经过对比分析,试验结果与计算模型吻合良好,锈蚀板抗弯承载力计算值与试验值之比的平均值为1.019,标准差为0.081.  相似文献   

15.
为了研究配置表层钢筋的混凝土梁的开裂性能,对8根配置500 MPa钢筋的矩形混凝土梁进行了受弯性能试验.试验结果表明,在构件的混凝土保护层中配置表层钢筋能使平均裂缝问距减小30%~50%,使短期最大裂缝宽度减小29%~70%.根据试验结果,分析了表层钢筋对混凝土梁平均裂缝间距和平均裂缝宽度的影响规律,并在我国规范GB 50010-2002裂缝宽度计算模式的基础上,提出了考虑表层钢筋的短期最大裂缝宽度计算公式.根据所提出公式计算的结果能够较好地与试验结果吻合.  相似文献   

16.
HRB400、HRB500钢筋在混凝土受弯构件中的应用分析   总被引:1,自引:0,他引:1  
依据新颁布的《混凝土结构设计规范》GB50010—2010中裂缝宽度计算公式,对一类环境下不同配筋方案的钢筋混凝土梁、板,从强度条件和裂缝控制两方面进行了计算分析。结果表明,一类环境下的梁,采用HRB400钢筋,可充分发挥其作用;板类构件,采用HRB500钢筋,可充分发挥其作用。  相似文献   

17.
以锈损率较低的钢筋混凝土简支梁为对象,在平截面假定基础上,提出考虑钢筋、混凝土材料性能劣化和几何尺寸变化的受弯承载力计算公式;采用换算截面法计算锈蚀钢筋混凝土梁的等效刚度,给出考虑锈蚀钢筋、混凝土二者间黏结性能退化的有效刚度计算公式,建议锈蚀钢筋混凝土简支梁在集中荷载作用下跨中挠度的计算方法,并通过39根锈蚀钢筋混凝土梁的试验数据对建议受弯分析模型验证。研究结果表明:锈蚀钢筋混凝土梁受弯承载力试验值与计算值之比的平均值为1.100,方差为0.041,二者吻合较好;多数锈蚀试件按受弯分析模型计算得到的荷载-跨中挠度曲线与试验曲线吻合较好,变化趋势相当,建议受弯分析模型可为锈蚀钢筋混凝土梁的全过程受力分析提供参考。  相似文献   

18.
目的 研究HRB635级高强钢筋与C70高强混凝土之间黏结锚固性能,为工程应用提供参考。方法 设计制作了5组45个直锚试件进行拉拔试验,分析了锚固长度、配箍率、混凝土保护层厚度等因素对锚固性能的影响。结果 试件极限承载力随配箍率和锚固长度的增加而增加,但当箍筋率ρsv大于1.26%,锚固长度la大于15d后,配箍率和锚固长度的增加不再对试件极限承载力产生明显的影响;对于未配置箍筋的试件,当试件保护层厚度从2d增加到3d时,试件极限承载力随着保护层厚度的增加而增加,但当保护层厚度大于3d后,保护层厚度的增加对试件极限承载力基本没有影响。结论 在进行HRB635级高强钢筋和C70高强混凝土试件设计时,锚固长度可按《混凝土结构设计规范》(GB 50010—2010)中相关公式进行计算,且具有足够的安全储备。  相似文献   

19.
为了探究不同剪跨比下配箍率对高强钢筋活性粉末混凝土(RPC)简支梁受剪性能的影响,对两组剪跨比(2.25,3.0)共6根不同配箍率的HRB500级钢筋RPC梁进行受剪性能试验.验证试验梁截面应变平截面假定,分析斜裂缝形态、开裂荷载与配箍率及剪跨比的关系,并提出基于修正压力场理论的HRB500级钢纤维RPC梁抗剪承载力的计算程序.研究表明:两组不同剪跨比下的试验梁在加载初始阶段均符合平截面假定,但达到40.4%极限荷载后,这种假定将不再满足;高强钢筋RPC梁的斜裂缝形态主要以腹剪型斜裂缝为主,其产生与配箍率及剪跨比相关,配箍率和剪跨比越大越不易产生主斜裂缝,但剪跨比的影响明显大于配箍率;基于修正压力场理论的计算程序比较适用于钢纤维高强钢筋RPC梁抗剪承载力的计算,其计算值与试验值吻合良好.  相似文献   

20.
为了研究钢筋锈蚀下混凝土箱梁挠度和裂缝宽度的变化,基于梁截面平衡和变形协调,引入锈蚀钢筋混凝土梁非线性本构关系,建立了箱梁受弯挠度和裂缝宽度解析表达式。针对铁路简支箱梁算例,研究了混凝土性能退化和钢筋锈蚀对梁挠度和裂缝宽度的影响;并和铁路桥梁规范中挠度和裂缝宽度的规范值进行了对比分析。结果表明:混凝土性能的退化对梁挠度和裂缝宽度影响很小;锈蚀钢筋力学性能的退化和锈蚀黏结滑移对挠度和裂缝宽度具有较大影响。当锈蚀率小于1.5%时,挠度和裂缝宽度均小幅减小;当锈蚀率超过1.5%后,挠度和裂缝宽度随着锈蚀率的增加开始增大。针对规范中挠度和裂缝宽度公式,提出了锈蚀黏结滑移修正系数,修正后的规范值与解析解吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号