首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
操作参数对PEMFC性能的影响   总被引:1,自引:0,他引:1  
通过实验研究三通道蛇形非对称流场的质子交换膜燃料电池(PEMFC)运行温度、气体加湿温度、空气流量、H2流量以及燃料电池工作压力等操作参数对PEMFC性能的影响。结果表明:燃料电池温度保持在333~343K,加湿温度与电池温度相同时,电池性能达到最佳状态;质子交换膜燃料电池中O2的还原反应是影响整个燃料电池放电性能的一个关键因素;工作压力为2.026×105Pa左右时电池的性能最佳。  相似文献   

2.
目的研究气体扩散层多孔介质渗透率对高温质子交换膜燃料电池(HTPEMFC)性能的影响,优化PEMFC的结构参数,提高电池的整体性能.方法采用多物理场直接耦合分析软件COMSOL Multiphysics,以直通道流场结构的PEMFC在工作电压为0.4V的条件下,对气体扩散层渗透率分别设定为1.18×10-12m2、1.18×10-11m2、1.18×10-10m2以及1.18×10-9m2的HT-PEMFC进行数值模拟和结果分析.结果模拟结果得出了流道内沿流道方向的阴极压力变化、电池电流密度以及阴极气态水浓度的分布情况.结论随着气体扩散层渗透率的增大,能有效降低电池阴极流道内的压降,进而改善电池内部传质、降低额外的功耗,提高电池电流密度以及增强阴极的排水能力.对HT-PEMFC结构的优化和设计具有重要的指导意义.  相似文献   

3.
质子交换膜燃料电池运行参数的仿真优化   总被引:3,自引:0,他引:3  
为研究质子交换膜燃料电池(PEMFC)工作温度和反应气体工作压力变化对单体输出性能的影响,通过建立PEMFC单体的电化学模型及系统参数模型,利用Matlab软件,以Mark V型燃料电池发动机为实例,研究了工作温度和反应气体工作压力变化对电池单体输出性能的影响.结果表明:(1)工作温度每提高10K,单体的平均电压、平均功率将增加3%,在高温阶段增幅略有下降;(2)提高反应气体工作压力同样有利于提高电池的输出性能,但提高幅度受电池本身的限制,其工作压力一般不超过1MPa;(3)PEMFC还具有较好的瞬时过载能力.  相似文献   

4.
二次吹扫条件下的PEMFC冷启动实验   总被引:2,自引:0,他引:2  
通过使用干空气二次吹扫的方式对稳定工作后的质子交换膜燃料电池(PEMFC)单电池进行除水处理,考察了单电池经过吹扫除水操作后的除水量以及内阻变化过程,并研究了单电池经过吹扫除水处理后的常温启动性能以及-10℃下的冷启动性能.实验研究发现:单电池经过干空气二次吹扫处理后,可以在较短时间内经济有效地移除电池内的水,同时单电池的内阻升高.单电池经过干空气二次吹扫后常温启动性能下降,且随二次吹扫流量的增加而加剧,但未造成不可恢复的性能损失.适当的二次吹扫流量可以使电池成功冷启动.吹扫除水策略是优化PEMFC冷启动性能的关键因素之一.  相似文献   

5.
为了保持质子交换膜燃料电池(PEMFC)的输出电压稳定,该文提出了一种电压动态控制模型.设计了一种自适应模糊比例积分微分(PID)控制器.通过3个模糊控制器实时地整定PID控制器参数.当电池负载发生变化时,通过调节氢气流速控制PEMFC电堆的输出电压.仿真结果表明,所建模型能较好地反映PEMFC的动态性能.与PID控制器相比,自适应模糊PID控制器可以使电池的输出电压快速平滑地过渡到设定值.  相似文献   

6.
质子交换膜燃料电池具有启动速度快、能量密度高及清洁环保等优点,可广泛应用于燃料电池汽车、固定式电站和移动型电源等领域。本文简要介绍了质子交换膜燃料电池的工作原理,综述了PEMFC的发展简史及研究进展。探讨了PEMFC的应用情况。从催化剂和电解质等关键材料,膜电极的性能,燃料的安全性与实用性,以及电池的寿命等方面详细分析了PEMFC的主要技术问题,并进一步展望了PEMFC的发展前景。  相似文献   

7.
质子交换膜燃料电池(PEMFC)长期运行过程中,其部件因损伤产生的杂质金属离子对燃料电池的电化学性能有重要影响。模拟PEMFC中Ca2+污染燃料电池工况,研究了Ca2+对PEMFC电化学性能的影响。实验结果表明:随着污染时间的增加,燃料电池性能逐渐衰减,当污染时间超过9 h,电池电压急剧降低;在高电流密度区(电流密度>400 mA/cm2),电压衰减最明显。在500 mA/cm2电流密度下恒电流放电2 h后,电压降低了41%。Ca2+的存在及其积累对质子交换膜燃料电池有明显的毒化作用。  相似文献   

8.
质子交换膜燃料电池用气体扩散层--碳纤维纸的制备   总被引:2,自引:0,他引:2  
介绍了质子交换膜燃料电池(PEMFC)的工作原理,并通过分析气体扩散层材料的性能要求,设计了一条制备高性能碳纤维纸的技术路线.对制得的碳纸样品进行了显微结构和基本性能的表征,同时还将它应用于PEMFC的单电池中进行综合性能的测试,测试结果表明,按照这种技术路线制得的碳纤维纸在性能上基本能满足PEMFC的使用要求.  相似文献   

9.
介绍了质子交换膜燃料电池(PEMFC)的工作原理,并通过分析气体扩散层材料的性能要求,设计了一条制备高性能碳纤维纸的技术路线。对制得的碳纸样品进行了显微结构和基本性能的表征,同时还将它应用于PEMFC的单电池中进行综合性能的测试,测试结果表明,按照这种技术路线制得的碳纤维纸在性能上基本能满足PEMFC的使用要求。  相似文献   

10.
阴极相对湿度是影响质子交换膜燃料电池(PEMFC)电化学性能的重要因素之一。通过实验并基于燃料电池反应动力学原理,研究了6种(25%、40%、55%、70%、85%和100%)阴极相对湿度对PEMFC电化学性能的影响。结果表明:阴极相对湿度对PEMFC电化学性能有重要的影响,在电池工作温度80℃和阳极相对湿度100%的条件下,随着阴极相对湿度的增加,电池的电化学性能先增大后减小,且阴极相对湿度为55%时,电池的电化学性能最佳,其最大功率密度为0.472 W/cm~2,开路电压为0.917 V,交换电流密度为0.416 mA/cm~2。与阴极相对湿度为55%时PEMFC的最大功率密度和开路电压相比,阴极相对湿度为25%、40%、70%、85%和100%时的最大功率密度分别下降了2.46%、0.58%、4.11%、10.71%和26.96%,对应的开路电压分别下降了1.89%、1.09%、2.01%、2.2%和2.48%。  相似文献   

11.
质子交换膜燃料电池(PEMFC)不受卡诺循环限制,能量转换效率高,被认为是最有潜力的绿色能源转换装置之一。为了最大程度地发挥燃料电池运行时的潜能,对操作参数控制的优化和研究变得至关重要。使用ANSYS/FLUENT建立了一个采用多平行蛇形流道的三维质子交换膜单体模型,开展不同操作压力(101.325、202.65、303.975 kPa)、进口温度(300、330 K)和散热率[5、40、60 W/(m~2·K)]下的性能变化模拟计算,分析不同操作参数及各参数耦合对燃料电池性能的影响。研究结果表明:各操作参数对燃料电池电流密度和温度的变化和分布情况均有显著影响;燃料电池性能在一定程度上随着散热率、操作压力及其进口温度的增加而升高,随工作电压的增加而下降;当工作电压为0.9 V时,电压对燃料电池性能的影响占据支配地位;当电压为0.5 V、散热率为60 W/(m~2·K)、操作压力为303.975 kPa时,电流密度最大,达到0.81 A/m~2。  相似文献   

12.
质子交换膜燃料电池(PEMFC)电堆的温度系统是一类存在非匹配摄动和外干扰的多输入多输出非线性系统,且工作温度对电池的输出性能有较大的影响.为削弱此负面影响,采用输入输出线性化方法与变结构控制相结合的智能控制方法.仿真试验结果表明,温度对参数摄动和负荷干扰具有很强的鲁棒性,动态特性好,渐近稳定;温度得到稳定控制之后,设计衰减整定PID参数的常规控制器可较好地改善电池的输出性能.  相似文献   

13.
将具有全局搜索能力的遗传算法应用于质子交换膜燃料电池(PEMFC)扩散电极的性能优化,通过对PEMFC单体建立二维稳态数值计算模型,在ISIGHT-FD软件平台上利用径向基函数(RBF)神经网络拟和模型,在相应的设计空间内生成RBF拟和曲面,调用多岛遗传算法(MIGA)对RBF拟和进行遗传搜索,得到了阴极扩散层厚度、孔隙率和渗透率的最优值,通过优化前后的氧气浓度和输出性能比较,表明这些参数可改善气体扩散层的传质性能.  相似文献   

14.
活化极化是由电极电化学反应造成的电压损失,对质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)的输出性能有重要影响。本文分析了PEMFC的工作原理和活化极化性能,建立了活化极化数学模型;同时针对6种不同阴极压力(30 kPa、40 kPa、50 kPa、60 kPa、70 kPa和 80 kPa)下的PEMFC极化曲线进行了MATLAB仿真和实验测试,在此基础上得出了阴极压力对PEMFC活化极化电压、输出功率、开路电压以及电化学效率的影响规律。仿真和实验结果表明,增大阴极压力可明显减小活化极化,提高PEMFC输出电压;在电池工作温度为60 ℃,阳极压力为60 kPa时,随着阴极压力的增加,PEMFC输出电压呈现先增大后减小的变化趋势,当阴极压力为70 kPa时,PEMFC输出功率最大,同时电化学效率最高。  相似文献   

15.
在质子交换膜燃料电池(PEMFC)中,采用电化学阻抗谱(EIS)研究了膜电极(MEA)的一些运行条件对其工作性能的影响,并探讨了其作用机理.通过测量数据的解析和等效电路的数学模拟,得到了与MEA结构关联的电极诸参数随电池温度和反应气体压力的变化规律.研究表明,MEA的氧电极的电化学反应电阻随电池温度的升高显著减小,氧电极的双电层电容随电池温度的升高有所增加,表明电极有效面积得以增加,有利于MEA工作性能的提高.  相似文献   

16.
随着能源危机及环境问题日益加剧,一种无污染且效率较高的电池——质子交换膜燃料电池(PEMFC)的研究对实际应用也日趋重要,研究的主要指标则是输出特性。根据质子交换膜燃料电池的数学模型,在simulink环境下建立了其稳态模型并进行仿真。对影响质子交换膜燃料电池输出特性的因素(单个电池的电压,活化过电压,欧姆过电压,浓差过电压,功率以及电池效率)进行分析,以电流密度为横轴,得出在不同工作温度,不同气体压强以及不同膜的水含量的情况下质子交换膜燃料电池的最佳稳态输出特性。通过优化参数,改善燃料电池的性能,这对质子交换膜燃料电池的实际应用具有重要的意义。  相似文献   

17.
利用极化曲线、电化学阻抗谱(EIS)、循环伏安(CV)及分区测试技术等表征手段,从不同角度对质子交换膜燃料电池(PEMFC)在低温(0℃)存储和启动工况下的性能衰减进行研究.结果表明:停机过程无气体吹扫的情况下,冻结/解冻循环导致PEMFC极化阻抗增加,电流密度衰减,催化剂电化学活性面积(ECSA)减少,以及分区电流密度分布均匀性下降,直接影响了PEMFC耐久性;基于优化的二次吹扫策略,可在更少吹扫气体用量下,增强吹扫除水效果;通过水浴加热辅助,在340s内成功实现单电池-30℃低温冷启动.  相似文献   

18.
利用耐受性曲线、极化曲线、循环伏安等电化学测试手段,分别考察了H2中ψ(H2S)分别为0.25×10-6、0.5×10-6、0.75×10-6、1.0×10-6、1.25×10-6、1.5×10-6以及5.0×10-6时对质子交换膜燃料电池(PEMFC)性能的影响.分析PEMFC性能达到相同的下降程度时通入H2S的量与其浓度之间的关系,通过拟合计算,得出H2中ψ(H2S)的合理控制范围为小于等于0.2×10-6.通过比较不同浓度H2S影响下的耐受性曲线,可以看出H2S在Pt表面的吸附具有累积性,即使ψ(H2S)低于0.2×10-6,其长时间的影响也会造成电池性能的下降.因此,如果单从控制H2中H2S浓度的角度来维持电池性能并不理想,还需要定期对电池性能进行恢复.比较了循环伏安法和空气吹扫法对电池性能的影响,这两种方法可分别使电池的性能恢复到初始状态的97%和95%,但是空气吹扫法更易于在车载条件下实现.  相似文献   

19.
操作条件对质子交换膜燃料电池性能的影响   总被引:3,自引:0,他引:3  
通过测量电池的电流-电压、电流密度-功率和电流密度-时间曲线,研究了温度、压力和尾气排放速度对质子交换膜燃料电池(PEMFC)性能的影响,得出了电池较佳的工作条件。实验结果表明:氢气和氧气的较佳工作压力分别为0.03MPa和0.3MPa;在该压力下,电池工作温度为60℃时,电池的最大功率密度可达0.44W/cm2;当尾气排放速度为20mL/min时,电池能够高效、稳定的运行。  相似文献   

20.
以新型阻醇材料Na2Ti3O7/Nafion复合膜为质子交换膜,利用热压法制备膜电极(MEA),对直接甲醇单电池进行测试.考察了电池温度、阴极加湿温度、甲醇浓度、甲醇流速和空气流速5个参数对直接甲醇燃料电池极化曲线性能的影响.实验结果表明,电池温度对电池性能的影响较为明显,提高电池温度有利于得到较好的电池性能.甲醇浓度对电池性能影响也比较明显,较低甲醇浓度有利于提高电池性能.甲醇流速和空气流速对电池性能的影响较小,阴极加湿温度对电池性能几乎没有影响.通过分析优化,该直接甲醇燃料电池的电池性能最佳工作条件是在80℃情况下,低电流密度工作区采用较低浓度甲醇溶液,高电流密度工作区采用高浓度甲醇溶液.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号